zoukankan      html  css  js  c++  java
  • Hadoop学习---Eclipse中hadoop环境的搭建

    在eclipse中建立hadoop环境的支持

    1.需要下载安装eclipse

    2.需要hadoop-eclipse-plugin-2.6.0.jar插件,插件的终极解决方案是https://github.com/winghc/hadoop2x-eclipse-plugin下载并编译。也是可用提供好的插件。

    3.复制编译好的hadoop-eclipse-plugin-2.6.0.jar复制到eclipse插件目录(plugins目录)下,如图所示

    wps15B1.tmp_thumb

    重启eclipse

    4.在eclipse中配置hadoop安装目录

    windows ->preference -> hadoop Map/Reduce -> Hadoop installation directory在此处指定hadoop的安装目录

    wps15B2.tmp_thumb

    点击Apply,点击OK确定

    5.配置Map Reduce视图

    window -> Open Perspective ->other-> Map/Reduce -> 点击“OK”

    window -> show view -> other -> Map/Reduce Locations -> 点击“OK”

    wps15C3.tmp_thumb

    6.在“Map/Reduce Location”Tab页点击图标<大象+>或者在空白的地方右键,选择“New Hadoop location...”,弹出对话框“New hadoop location...”,进行相应的配置

    wps15C4.tmp_thumb

    设置Location name为任意都可以,Host为hadoop集群中主节点所在主机的ip地址或主机名,这里MR Master的Port需mapred-site.xml配置文件一致为10020,DFS Master的Port需和core-site.xml配置文件的一致为9000,User name为root(安装hadoop集群的用户名)。之后点击finish。在eclipse的DFS Location目录下出现刚刚创建的Location name(这里为hadoop),eclipse就与hadoop集群连接成功,如图所示。

    wps15C5.tmp_thumb

    7.打开Project Explorers查看HDFS文件系统,如图所示

    wps15D5.tmp_thumb

    8.新建Map/Reduce任务

    需要先启动Hadoop服务

    File -> New -> project -> Map Reduce Project ->Next

    wps15D6.tmp_thumb

    填写项目名称

    wps15E7.tmp_thumb

    编写WordCount类:

    package test;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    public class WordCount {
    	public static class MyMap extends Mapper<Object, Text, Text, IntWritable> {
    		private final static IntWritable one = new IntWritable(1);
    		private Text word = new Text();
    		@Override
    		public void map(Object key, Text value, Context context)
    				throws IOException, InterruptedException {
    			StringTokenizer itr = new StringTokenizer(value.toString());
    			while (itr.hasMoreTokens()) {
    				word.set(itr.nextToken());
    				context.write(word, one);
    			}
    		}
    	}
    
    	public static class MyReduce extends
    			Reducer<Text, IntWritable, Text, IntWritable> {
    		private IntWritable result = new IntWritable();
    		@Override
    		public void reduce(Text key, Iterable<IntWritable> values,
    				Context context)
    		throws IOException, InterruptedException {
    			int sum = 0;
    			for (IntWritable val : values) {
    				sum += val.get();
    			}
    			result.set(sum);
    			context.write(key, result);
    		}
    	}
    
    	public static void main(String[] args) throws Exception {
    		Configuration conf = new Configuration();
    		String[] otherArgs = new GenericOptionsParser(conf, args)
    		if (otherArgs.length != 2) {
    			System.err.println("Usage: wordcount <in> <out>");
    			System.exit(2);
    		}
    		Job job = new Job(conf, "word count");
    		job.setJarByClass(WordCount.class);
    		job.setMapperClass(MyMap.class);
    		job.setReducerClass(MyReduce.class);
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
    		FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
    		System.exit(job.waitForCompletion(true) ? 0 : 1);
    	}
    }
    

    运行WordCount程序:

    右键单击Run As -> Run Configurations

    选择Java Applications ->WordCount(要运行的类)->Arguments

    在Program arguments中填写输入输出路径,点击Run

    wps15E8.tmp_thumb

  • 相关阅读:
    53个Python面试问题
    ycsb对hbase性能测试的研究
    zookeeper的安装(图文详解。。。来点击哦!)
    Zookeeper概论(对zookeeper的概论、原理、架构等的理解)
    Hadoop集群搭建安装过程(三)(图文详解---尽情点击!!!)
    Hadoop集群搭建安装过程(二)(图文详解---尽情点击!!!)
    Hadoop集群搭建安装过程(一)(图文详解---尽情点击!!!)
    Linux虚拟机安装(CentOS 6.5,图文详解,需要自查)
    Hive中的排序和分组(对map和reduce的影响,值得一看!)
    HDFS的工作原理(读和写操作)
  • 原文地址:https://www.cnblogs.com/ftl1012/p/9350238.html
Copyright © 2011-2022 走看看