zoukankan      html  css  js  c++  java
  • poj2479:Maximum sum

    Description

    Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
    Your task is to calculate d(A).

    Input

    The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input. 
    Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.

    Output

    Print exactly one line for each test case. The line should contain the integer d(A).

    Sample Input

    1
    
    10
    1 -1 2 2 3 -3 4 -4 5 -5

    Sample Output

    13

    Hint

    In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer. 

    Huge input,scanf is recommended.
    题解
    寻找最大连续子段和,因为求两个所以正反向各一遍,再遍历分界点。
    先求到当前位置的最大子段和(包含该位置),再求当前位置及之前的最大子段和(可包含可不包含)
     1 #include<cstdio>
     2 #include<algorithm>
     3 #include<cstring>
     4 using namespace std;
     5 #define maxn 50005
     6 #define inf 1<<29
     7 int f[maxn],d[maxn],a[maxn],lf[maxn],rf[maxn];
     8 int ans;
     9 int main()
    10 {
    11     int T,n;
    12     scanf("%d",&T);
    13     while(T--)
    14     {
    15         scanf("%d",&n);
    16         ans=-inf;
    17         for(int i=1 ; i<=n ; ++i )
    18             scanf("%d",&a[i]);
    19         f[0]=f[n+1]=d[0]=d[n+1]=lf[0]=lf[n+1]=rf[0]=rf[n+1]=-inf;
    20         for(int i=1 ; i<=n ; ++i)
    21             f[i]=max(a[i],f[i-1]+a[i]);
    22         for(int i=1 ; i<=n ; ++i)
    23             lf[i]=max(lf[i-1],f[i]);
    24         for(int i=n ; i>=1 ; --i)
    25             d[i]=max(a[i],d[i+1]+a[i]);
    26         for(int i=n ; i>=1 ; --i)
    27             rf[i]=max(rf[i+1],d[i]);
    28         for(int i=1 ; i<n ; ++i )
    29             ans=max(ans,lf[i]+rf[i+1]);
    30         printf("%d
    ",ans);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    113. Path Sum II
    112. Path Sum
    111. Minimum Depth of Binary Tree
    110. Balanced Binary Tree
    Create
    SetWindowPos
    INT_PTR数据类型
    SDK介绍
    COLORREF
    setfont()函数
  • 原文地址:https://www.cnblogs.com/fujudge/p/7523035.html
Copyright © 2011-2022 走看看