一个 Tokenization 的 demo
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# import a list of sentences and use Tokenizer to transform words to token
sentences = [
'I love my dog',
'I love my cat',
# Tokenizer is smart because it can ingore some punctuation like '!'
# as you can see the results of tokenization don't contain '!'
'You love my dog!',
# the sentences above are all just contain four words
# so we add a sentence composed by five words
'Do you think my dog is amazing?'
]
# tokenization => encoding
# tokenizer = Tokenizer(num_words = 100)
# we can add a default value to represent words that we didn't import before
tokenizer = Tokenizer(num_words = 100,oov_token="<OOV>")
# import sentences
tokenizer.fit_on_texts(sentences)
# get tokens of them
word_index = tokenizer.word_index
# tokenizer.texts_to_sequences() create a list of token sequnences which aganist each sentences
sequences = tokenizer.texts_to_sequences(sentences)
# padding can keep sequences' lengthes same to the max length by add '0' to the front of their token list
# padded = pad_sequences(sequences)
# if you want to add '0' to ten end of the sequences, just add the attribute 'padding='
padded = pad_sequences(sequences,padding='post')
# if you want the results's length don't equal to the max length, just add the attribute 'maxlen'
# padded = pad_sequences(sequences,padding='post',maxlen=5)
print(word_index)
print(sequences)
print(padded)
'''
output:
{'<OOV>': 1, 'my': 2, 'love': 3, 'dog': 4, 'i': 5, 'you': 6, 'cat': 7, 'do': 8, 'think': 9, 'is': 10, 'amazing': 11}
[[5, 3, 2, 4], [5, 3, 2, 7], [6, 3, 2, 4], [8, 6, 9, 2, 4, 10, 11]]
[[ 5 3 2 4 0 0 0]
[ 5 3 2 7 0 0 0]
[ 6 3 2 4 0 0 0]
[ 8 6 9 2 4 10 11]]
'''
test_data = [
'i really love my dog',
'my dog loves my manatee'
]
# we import some sentences that contain non-tokenized words
# see what will happend
test_seq = tokenizer.texts_to_sequences(test_data)
print(test_seq)
# output is 'i really love my dog'->[4, 2, 1, 3]
# we can see that a 5 words sentence just generate a 4 tokens sequence
# because our word_index don't have a token to represent 'really'
# after we add a default value such as <OOV> to the tokenizer
# output is 'i really love my dog'->[5, 1, 3, 2, 4]
# we can use this method to keep our sequences have same length with it's orgin sentences
# But we can use other more powerful method such
# as Ragged Tensor(不规则张量) and padding to handle with the issue of different length between raw sentences and output sequences
'''
[[5, 1, 3, 2, 4], [2, 4, 1, 2, 1]]
'''
文字情感检测
import json
import tensorflow as tf
import numpy as np
sentences = []
labels = []
urls = []
with open("Sarcasm_Headlines_Dataset.json",'r') as f:
while True:
line = f.readline()
if not line: # 到 EOF,返回空字符串,则终止循环
break
datastore = json.loads(line)
sentences.append(datastore['headline'])
labels.append(datastore['is_sarcastic'])
urls.append(datastore['article_link'])
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
# tokenizer = Tokenizer(oov_token="<OOV>")
# tokenizer.fit_on_texts(sentences)
#word_index = tokenizer.word_index
# sequences = tokenizer.texts_to_sequences(sentences)
# padded = pad_sequences(sequences,padding='post')
#print(word_index)
#print(padded[0])
#print(padded.shape)
vocab_size = 10000
oov_tok = "<OOV>"
max_length = 100
padding_type = 'post'
trunc_type = 'post'
embedding_dim = 16
training_size = 20000
training_sentences = sentences[0:training_size]
testing_sentences = sentences[training_size:]
training_labels = labels[0:training_size]
testing_labels = labels[training_size:]
# to meet training's need, we need to rewrite the function
tokenizer = Tokenizer(num_words=vocab_size,oov_token=oov_tok)
# just import training data
tokenizer.fit_on_texts(training_sentences)
word_index = tokenizer.word_index
training_sequences = tokenizer.texts_to_sequences(training_sentences)
training_padded = pad_sequences(training_sequences,maxlen=max_length,
padding=padding_type,truncating=trunc_type)
testing_sequences = tokenizer.texts_to_sequences(testing_sentences)
testing_padded = pad_sequences(testing_sequences,maxlen=max_length,
padding=padding_type,truncating=trunc_type)
training_padded = np.array(training_padded)
testing_padded = np.array(testing_padded)
training_labels = np.array(training_labels)
testing_labels = np.array(testing_labels)
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim, input_length=max_length),
#pooling add the word vectors
tf.keras.layers.GlobalAveragePooling1D(),
tf.keras.layers.Dense(64,activation='relu'),
tf.keras.layers.Dense(1,activation='sigmoid')
])
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
num_epochs = 30
history = model.fit(training_padded, training_labels, epochs=num_epochs,
validation_data=(testing_padded,testing_labels),verbose=2)
'''
Epoch 1/30
625/625 - 1s - loss: 0.6411 - accuracy: 0.6237 - val_loss: 0.4966 - val_accuracy: 0.8125
Epoch 2/30
625/625 - 1s - loss: 0.3776 - accuracy: 0.8454 - val_loss: 0.3656 - val_accuracy: 0.8471
Epoch 3/30
625/625 - 1s - loss: 0.2841 - accuracy: 0.8874 - val_loss: 0.3443 - val_accuracy: 0.8566
Epoch 4/30
625/625 - 1s - loss: 0.2369 - accuracy: 0.9058 - val_loss: 0.3590 - val_accuracy: 0.8498
Epoch 5/30
625/625 - 1s - loss: 0.2017 - accuracy: 0.9234 - val_loss: 0.3517 - val_accuracy: 0.8548
Epoch 6/30
625/625 - 1s - loss: 0.1749 - accuracy: 0.9354 - val_loss: 0.3794 - val_accuracy: 0.8489
Epoch 7/30
625/625 - 1s - loss: 0.1555 - accuracy: 0.9427 - val_loss: 0.3870 - val_accuracy: 0.8533
Epoch 8/30
625/625 - 1s - loss: 0.1366 - accuracy: 0.9512 - val_loss: 0.4144 - val_accuracy: 0.8472
Epoch 9/30
625/625 - 1s - loss: 0.1237 - accuracy: 0.9553 - val_loss: 0.4326 - val_accuracy: 0.8475
Epoch 10/30
625/625 - 1s - loss: 0.1111 - accuracy: 0.9622 - val_loss: 0.4575 - val_accuracy: 0.8463
Epoch 11/30
625/625 - 1s - loss: 0.1004 - accuracy: 0.9647 - val_loss: 0.4880 - val_accuracy: 0.8430
Epoch 12/30
625/625 - 1s - loss: 0.0892 - accuracy: 0.9718 - val_loss: 0.5408 - val_accuracy: 0.8357
Epoch 13/30
625/625 - 1s - loss: 0.0815 - accuracy: 0.9732 - val_loss: 0.5543 - val_accuracy: 0.8378
Epoch 14/30
625/625 - 1s - loss: 0.0751 - accuracy: 0.9748 - val_loss: 0.5920 - val_accuracy: 0.8346
Epoch 15/30
625/625 - 1s - loss: 0.0666 - accuracy: 0.9785 - val_loss: 0.6260 - val_accuracy: 0.8310
Epoch 16/30
625/625 - 1s - loss: 0.0617 - accuracy: 0.9791 - val_loss: 0.6854 - val_accuracy: 0.8287
Epoch 17/30
625/625 - 1s - loss: 0.0567 - accuracy: 0.9814 - val_loss: 0.6992 - val_accuracy: 0.8268
Epoch 18/30
625/625 - 1s - loss: 0.0514 - accuracy: 0.9837 - val_loss: 0.7647 - val_accuracy: 0.8240
Epoch 19/30
625/625 - 1s - loss: 0.0482 - accuracy: 0.9848 - val_loss: 0.8646 - val_accuracy: 0.8180
Epoch 20/30
625/625 - 1s - loss: 0.0424 - accuracy: 0.9877 - val_loss: 0.8183 - val_accuracy: 0.8207
Epoch 21/30
625/625 - 1s - loss: 0.0393 - accuracy: 0.9888 - val_loss: 0.9400 - val_accuracy: 0.8186
Epoch 22/30
625/625 - 1s - loss: 0.0371 - accuracy: 0.9883 - val_loss: 0.9198 - val_accuracy: 0.8171
Epoch 23/30
625/625 - 1s - loss: 0.0346 - accuracy: 0.9894 - val_loss: 0.9481 - val_accuracy: 0.8165
Epoch 24/30
625/625 - 1s - loss: 0.0296 - accuracy: 0.9914 - val_loss: 0.9933 - val_accuracy: 0.8144
Epoch 25/30
625/625 - 1s - loss: 0.0278 - accuracy: 0.9920 - val_loss: 1.1238 - val_accuracy: 0.8129
Epoch 26/30
625/625 - 1s - loss: 0.0278 - accuracy: 0.9919 - val_loss: 1.0576 - val_accuracy: 0.8140
Epoch 27/30
625/625 - 1s - loss: 0.0241 - accuracy: 0.9930 - val_loss: 1.1133 - val_accuracy: 0.8126
Epoch 28/30
625/625 - 1s - loss: 0.0254 - accuracy: 0.9923 - val_loss: 1.2534 - val_accuracy: 0.8109
Epoch 29/30
625/625 - 1s - loss: 0.0211 - accuracy: 0.9937 - val_loss: 1.1678 - val_accuracy: 0.8095
Epoch 30/30
625/625 - 1s - loss: 0.0190 - accuracy: 0.9946 - val_loss: 1.2294 - val_accuracy: 0.8097
'''
# test
sentence = [
"granny starting to fear spiders in the garden might be real",
"the weather today is bright and sunny"
]
sequences = tokenizer.texts_to_sequences(sentence)
padded = pad_sequences(sequences, maxlen=max_length,padding=padding_type,truncating=trunc_type)
print(model.predict(padded))
# 向模型中引入LSTM
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, 64),
# import LSTM
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64,return_sequences=True)),
tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
tf.keras.layers.Dense(64,activation='relu'),
tf.keras.layers.Dense(1,activation='sigmoid')
])
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
num_epochs = 30
history = model.fit(training_padded, training_labels, epochs=num_epochs,
validation_data=(testing_padded,testing_labels),verbose=2)
poetry_creater
!wget https://storage.googleapis.com/laurencemoroney-blog.appspot.com /eat_tensorflow2_in_30_days/irish-lyrics-eof.txt -O /irish-lyrics-eof.txt --no-check-certificate
import tensorflow as tf
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.optimizers import Adam
import numpy as np
tokenizer = Tokenizer()
data = open('irish-lyrics-eof.txt').read()
corpus = data.lower().split("
")
tokenizer.fit_on_texts(corpus)
total_words = len(tokenizer.word_index) + 1
print(tokenizer.word_index)
print(total_words)
input_sequences = []
for line in corpus:
token_list = tokenizer.texts_to_sequences([line])[0]
for i in range(1, len(token_list)):
# generate n_gram_sequence
'''
可以理解成将句子分割成一个递增的序列
a
ab
abc
abcd
'''
n_gram_sequence = token_list[:i+1]
input_sequences.append(n_gram_sequence)
# pad sequences
max_sequence_len = max([len(x) for x in input_sequences])
'''
填充完毕之后类似于以下效果
0 0 0 0 0 0 0 0 4 2
0 0 0 0 0 0 0 4 2 66
0 0 0 0 0 0 4 2 66 8
0 0 0 0 0 4 2 66 8 67
我们将出最后一个token以外的值全部看做input(x),而把最后一个值看做label(y)
'''
input_sequences = np.array(pad_sequences(input_sequences,
maxlen=max_sequence_len,
padding='pre'))
# create predictors and label
xs, labels = input_sequences[:,:-1],input_sequences[:,-1]
# 将y分别并且变成one-hot编码
ys = tf.keras.utils.to_categorical(labels, num_classes=total_words)
print(xs[6])
print(ys[6])
print(xs[5])
print(ys[5])
print(tokenizer.word_index)
model = Sequential()
# total_words 语料库单词数 input_length=max_sequence_len-1是因为我们将每个序列的最后一个值设定成了label
model.add(Embedding(total_words, 100, input_length=max_sequence_len-1))
model.add(Bidirectional(LSTM(150)))
model.add(Dense(total_words, activation='softmax'))
adam = Adam(lr=0.01)
# 设置分类损失函数
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
# earlystop = EarlyStopping(monitor = 'val_loss', min_delta=0, patience=5, verbose=0, mode='auto')
history = model.fit(xs, ys, epochs=100, verbose=1)
# print model.summmary()
print(model)
import matplotlib.pyplot as plt
def plot_graphs(history, string):
plt.plot(history.history[string])
plt.xlabel("Epochs")
plt.ylabel(string)
plt.show()
plot_graphs(history, 'accuracy')
# test
seed_text = "I've got a bad feeling about this"
next_words = 100
for _ in range(next_words):
token_list = tokenizer.texts_to_sequences([seed_text])[0]
token_list = pad_sequences([token_list], maxlen=max_sequence_len-1, padding='pre')
# predicted = model.predict_classes(token_list, verbose=0)
predict_x=model.predict(token_list, verbose=0)
predicted=np.argmax(predict_x,axis=1)
output_word = ""
for word, index in tokenizer.word_index.items():
if index == predicted:
output_word = word
break
seed_text += " " + output_word
print(seed_text)