zoukankan      html  css  js  c++  java
  • 利用pyecharts将数据可视化

    可视化展示在数据分析领域中是一个至关重要的点,好的可视化展示对我们的结果分析有更好的支持作用。

    一、问题

    在数据分析的时代里面我们需要将数据的可视化展现出来,更加方便用户的观察。如下图

    有些时候我们需要将数据和地理关系连接起来,将数据更好的可视化操作,如下图,因此介绍pyecharts

     

    二、方法

    解决我们可以使用matplotlib,使用指令【pip install matplotlib】进行安装,除了这个以外将介绍一种由js渲染出来的动图——pyecharts,可以结合中国地图以及其他比较酷炫的可视化展示。

    1.安装pyecharts指令

    pip install pyecharts】进行安装

    2.安装地图包

    安装国家:【pip3 install echarts-countries-pypkg

    安装各省:【pip3 install echarts-china-provinces-pypkg

    安装各个城市:【pip3 install echarts-china-cities-pypkg】 

     

    三、使用

    由于python2.7将不再维护,所以全面使用python3.x+,因此以前的内容都不能在使用需要查看官方文档给出的例子:pyecharts

    这里展示一小部分的内容,剩下的内容去参考官网。

    Provincespro_value都是列表形式的数据,

    path_store是存储的路劲:要以.html结尾,

    name是标题名字,

    max_c是在图中显示的最大值,

    min_c是在图中显示的最小值。

    其余的参数设置可以在官网中查看。

    from pyecharts.charts import Map
    from pyecharts import options as opts
    def map_visual_map(counter_dict, path_store, name, max_c, min_c) -> Map:
        provinces = list(counter_dict.keys())
        pro_value = list(counter_dict.values())
        c = (
            Map()
                .add("", [list(z) for z in zip(provinces, pro_value)], "china")
                .set_global_opts(
                title_opts=opts.TitleOpts(title=name),
                visualmap_opts=opts.VisualMapOpts(max_=max_c, min_=min_c),
            )
        )
        return c.render(path_store)

    四、结果展示

    五、注意

    1.版本

    问题:

    很多人在导入的时候会出现 cannt import name 'Bar'

    原因:

    由于更迭pyecharts0.5的版本不适用高版本,它是支持2.7/3.4+的版本。而1.0的版本是支持3.6+的所以注意版本的使用。

    这两个的区别导致导入的方式和使用的方式不一样。下面给出开发者的github的地址,里面有详细的介绍。

    github:

    https://github.com/pyecharts/pyecharts

    https://github.com/pyecharts/pyecharts/issues/1033

    2.数据安装

    一般安装一个国家的地图就够了,注意数据量也是比较大的。其他的就根据需求来就可以了。

    六、参考:

    官方文档
    https://pyecharts.org/#/zh-cn/quickstart

    1版本的知乎实例参考
    https://zhuanlan.zhihu.com/p/72624794

    0.5版本的解决办法

    https://blog.csdn.net/weixin_42741271/article/details/90343159

    https://blog.csdn.net/qq_41997920/article/details/89788713

  • 相关阅读:
    Java并发专题 带返回结果的批量任务执行
    angualejs
    Java并发编程:Callable、Future和FutureTask
    mybatis
    InitialContext和lookup
    git 常用使用命令
    junit spring 测试
    redis windows
    为何PS出的RSS总和大于实际物理内存
    32位机器的LowMemory
  • 原文地址:https://www.cnblogs.com/future-dream/p/11709272.html
Copyright © 2011-2022 走看看