zoukankan      html  css  js  c++  java
  • Spark 源码分析 -- Task

    Task是介于DAGScheduler和TaskScheduler中间的接口
    在DAGScheduler, 需要把DAG中的每个stage的每个partitions封装成task
    最终把taskset提交给TaskScheduler

     

    /**
     * A task to execute on a worker node.
     */
    private[spark] abstract class Task[T](val stageId: Int) extends Serializable {
      def run(attemptId: Long): T  //Task的核心函数
      def preferredLocations: Seq[TaskLocation] = Nil //Spark关注locality,可以选择该task运行的location
      var epoch: Long = -1   // Map output tracker epoch. Will be set by TaskScheduler.
      var metrics: Option[TaskMetrics] = None
    }

     

    TaskContext

    用于记录TaskMetrics和在Task中用到的callback

    比如对于HadoopRDD, task完成时需要close input stream

    package org.apache.spark
    class TaskContext(
      val stageId: Int,
      val splitId: Int,
      val attemptId: Long,
      val runningLocally: Boolean = false,
      val taskMetrics: TaskMetrics = TaskMetrics.empty() //TaskMetrics封装了task执行时一些指标和数据 
    ) extends Serializable {
    
      @transient val onCompleteCallbacks = new ArrayBuffer[() => Unit]
    
      // Add a callback function to be executed on task completion. An example use
      // is for HadoopRDD to register a callback to close the input stream.
      def addOnCompleteCallback(f: () => Unit) {
        onCompleteCallbacks += f
      }
    
      def executeOnCompleteCallbacks() {
        onCompleteCallbacks.foreach{_()}
      }
    }

     

    ResultTask

    对应于Result Stage直接产生结果

    package org.apache.spark.scheduler
    private[spark] class ResultTask[T, U](
        stageId: Int,
        var rdd: RDD[T],
        var func: (TaskContext, Iterator[T]) => U,
        var partition: Int,
        @transient locs: Seq[TaskLocation],
        var outputId: Int)
      extends Task[U](stageId) with Externalizable {
    
      override def run(attemptId: Long): U = {  // 对于resultTask, run就是返回执行的结果, 比如count值
        val context = new TaskContext(stageId, partition, attemptId, runningLocally = false)
        metrics = Some(context.taskMetrics)
        try {
          func(context, rdd.iterator(split, context)) // 直接就是对RDD的iterator调用func, 比如count函数
        } finally {
          context.executeOnCompleteCallbacks()
        }
      }
    }

     

    ShuffleMapTask

    对应于ShuffleMap Stage, 产生的结果作为其他stage的输入

    package org.apache.spark.scheduler
    private[spark] class ShuffleMapTask(
        stageId: Int,
        var rdd: RDD[_],
        var dep: ShuffleDependency[_,_],
        var partition: Int,
        @transient private var locs: Seq[TaskLocation])
      extends Task[MapStatus](stageId)
      with Externalizable
      with Logging {
    
      override def run(attemptId: Long): MapStatus = {
        val numOutputSplits = dep.partitioner.numPartitions // 从ShuffleDependency的partitioner中获取到shuffle目标partition的个数
    
        val taskContext = new TaskContext(stageId, partition, attemptId, runningLocally = false)
        metrics = Some(taskContext.taskMetrics)
    
        val blockManager = SparkEnv.get.blockManager // shuffle需要借助blockManager来完成
        var shuffle: ShuffleBlocks = null
        var buckets: ShuffleWriterGroup = null
    
        try {
          // Obtain all the block writers for shuffle blocks.
          val ser = SparkEnv.get.serializerManager.get(dep.serializerClass)
          shuffle = blockManager.shuffleBlockManager.forShuffle(dep.shuffleId, numOutputSplits, ser) // 创建shuffleBlockManager, 参数是shuffleId和目标partitions数目
          buckets = shuffle.acquireWriters(partition) // 生成shuffle目标buckets(对应于partition)
    
          // Write the map output to its associated buckets.
          for (elem <- rdd.iterator(split, taskContext)) { // 从RDD中取出每个elem数据
            val pair = elem.asInstanceOf[Product2[Any, Any]]
            val bucketId = dep.partitioner.getPartition(pair._1) // 根据pair的key进行shuffle, 得到目标bucketid
            buckets.writers(bucketId).write(pair) // 将pair数据写入bucket
          }
          
          // Commit这些buckets到block, 其他的RDD会从通过shuffleid找到这些block, 并读取数据
          // Commit the writes. Get the size of each bucket block (total block size).
          var totalBytes = 0L
          val compressedSizes: Array[Byte] = buckets.writers.map { writer: BlockObjectWriter => // 计算所有buckets写入文件data的size总和(压缩值)
            writer.commit()
            writer.close()
            val size = writer.size()
            totalBytes += size
            MapOutputTracker.compressSize(size)
          }
    
          // Update shuffle metrics.
          val shuffleMetrics = new ShuffleWriteMetrics
          shuffleMetrics.shuffleBytesWritten = totalBytes
          metrics.get.shuffleWriteMetrics = Some(shuffleMetrics)
    
          return new MapStatus(blockManager.blockManagerId, compressedSizes) // 返回值为MapStatus, 包含blockManagerId和写入的data size, 会被注册到MapOutputTracker
        } catch { case e: Exception =>
          // If there is an exception from running the task, revert the partial writes
          // and throw the exception upstream to Spark.
          if (buckets != null) {
            buckets.writers.foreach(_.revertPartialWrites())
          }
          throw e
        } finally {
          // Release the writers back to the shuffle block manager.
          if (shuffle != null && buckets != null) {
            shuffle.releaseWriters(buckets)
          }
          // Execute the callbacks on task completion.
          taskContext.executeOnCompleteCallbacks()
        }
      }

     

    TaskSet

    用于封装一个stage的所有的tasks, 以提交给TaskScheduler

    package org.apache.spark.scheduler
    /**
     * A set of tasks submitted together to the low-level TaskScheduler, usually representing
     * missing partitions of a particular stage.
     */
    private[spark] class TaskSet(
        val tasks: Array[Task[_]],
        val stageId: Int,
        val attempt: Int,
        val priority: Int,
        val properties: Properties) {
        val id: String = stageId + "." + attempt
    
      override def toString: String = "TaskSet " + id
    }
  • 相关阅读:
    android:text 文字阴影设置
    android 布局的android:padding 和android:margin的区别
    sqlite的Query方法操作和参数详解
    SQL Server中如何让SQL语句对字符串大小写敏感
    android SQLite数据库(转)
    JAVA中内存分配的问题
    testview属性之详解
    在linux环境下安装VMtools(成功)
    关于配置文件
    C#的几种“属性”概念理解
  • 原文地址:https://www.cnblogs.com/fxjwind/p/3497863.html
Copyright © 2011-2022 走看看