zoukankan      html  css  js  c++  java
  • 数字图像处理之频域图像增强

    数字图像处理之频域图像增强

                                                            by方阳

    版权声明:本文为博主原创文章,转载请指明转载地址

    http://www.cnblogs.com/fydeblog/p/7069942.html 

    1. 前言

     

    这篇博客主要讲解频域滤波增强的各类滤波器的实现,并分析不同的滤波器截止频率对频域滤波增强效果的影响。理论的知识还请看书和百度,这里不再复述!

     

    2. 原理说明

     

    (1)  图像的增强可以通过频域滤波来实现,频域低通滤波器滤除高频噪声,频域高通滤波器滤除低频噪声。

     

    (2)  相同类型的滤波器的截止频率不同,对图像的滤除效果也会不同。

    3. 实现内容

    (1)     选择任意一副图像,对其进行傅里叶变换,在频率域中实现二阶butterworth低通滤波器的平滑作用,截止频率任意设定。显示原始图像和滤波图像。

    (2)     选择任意一副图像,对其进行傅里叶变换,在频率域中实现两种不同半径(截止频率)的高斯高通滤波的锐化效果,显示原始图像和滤波图像,及与原图像叠加的高频增强图像。

    4. 程序实现及实验结果

    (1)butterworth滤波器

    参考代码:

    I=imread('fig620.jpg');
    f=D3_To_D2(I);
    PQ=paddedsize(size(f));
    [U,V]=dftuv(PQ(1),PQ(2));
    D0=0.05*PQ(2);
    F=fft2(f,PQ(1),PQ(2));
    H=1./(1+((U.^2+V.^2)/(D0^2)).^2);
    g=dftfilt(f,H);
    figure;
    subplot(1,3,1);
    imshow(f);
    title('原图');
    subplot(1,3,2);
    imshow(fftshift(H),[]);
    title('滤波器频谱');
    subplot(1,3,3);
    imshow(g,[]);
    title('滤波后的图像');
    

     D3_To_D2函数参考代码:

    function image_out=D3_To_D2(image_in)
    [m,n]=size(image_in);
     n=n/3;%由于我的灰度图像是185x194x3的,所以除了3,你们如果是PxQ的,就不要加了
     A=zeros(m,n);%构造矩阵
     for i=1:m
         for j=1:n
            A(i,j)= image_in(i,j);%填充图像到A
         end
     end
    image_out=uint8(A);
    

    paddedsize函数参考代码:

    function PQ = paddedsize(AB,CD,~ )  
    %PADDEDSIZE Computes padded sizes useful for FFT-based filtering.  
    %   Detailed explanation goes here  
    if nargin == 1  
        PQ = 2*AB;  
    elseif nargin ==2 && ~ischar(CD)  
        PQ = QB +CD -1;  
        PQ = 2*ceil(PQ/2);  
    elseif nargin == 2  
        m = max(AB);%maximum dimension  
          
        %Find power-of-2 at least twice m.  
        P = 2^nextpow(2*m);  
        PQ = [P,P];  
    elseif nargin == 3  
        m = max([AB CD]);%maximum dimension  
        P = 2^nextpow(2*m);  
        PQ = [P,P];  
    else   
        error('Wrong number of inputs');  
      
    end  
    

    dftuv函数参考代码:

    function [ U,V ] = dftuv( M, N )  
    %DFTUV 实现频域滤波器的网格函数  
    %   Detailed explanation goes here  
    u = 0:(M - 1);  
    v = 0:(N - 1);  
    idx = find(u > M/2); %找大于M/2的数据  
    u(idx) = u(idx) - M; %将大于M/2的数据减去M  
    idy = find(v > N/2);  
    v(idy) = v(idy) - N;  
    [V, U] = meshgrid(v, u);        
      
    end  
    

    运行结果

    (2)高通滤波器

    参考代码:

    I1=imread('lena.bmp');
    f1=D3_To_D2(I1);
    PQ1=paddedsize(size(f1));
    D0_1=0.05*PQ(1);
    D0_2=0.1*PQ(1);
    H1=hpfilter('gaussian',PQ1(1),PQ1(2),D0_1);
    H2=hpfilter('gaussian',PQ1(1),PQ1(2),D0_2);
    g1=dftfilt(f1,H1);
    g2=dftfilt(f1,H2);
    H1=0.5+2*H1;
    H2=0.5+2*H2;
    g3=dftfilt(f1,H1);
    g4=dftfilt(f1,H2);
    g3=histeq(gscale(g3),256);
    g4=histeq(gscale(g4),256);
    figure;
    subplot(2,3,1);
    imshow(f1);
    title('原图');
    subplot(2,3,2);
    imshow(g1,[]);
    title('滤波后的图像-系数0.05');
    subplot(2,3,3);
    imshow(g2,[]);
    title('滤波后的图像-系数0.1');
    subplot(2,3,4);
    imshow(g3,[]);
    title('增强后的图像-系数0.05');
    subplot(2,3,5);
    imshow(g4,[]);
    title('增强后的图像-系数0.1');
    

    hpfilter函数参考代码:

    function H = hpfilter(type, M, N, D0, n)
    if nargin == 4
        n = 1;
    end
    hlp = lpfilter(type, M, N, D0, n);
    H = 1 - hlp;
    

    hpfilter中的lpfilter参考代码:

    function [ H, D ] = lpfilter( type,M,N,D0,n )  
    %LPFILTER creates the transfer function of a lowpass filter.  
    %   Detailed explanation goes here  
      
    %use function dftuv to set up the meshgrid arrays needed for computing   
    %the required distances.  
    [U, V] = dftuv(M,N);  
       
    %compute the distances D(U,V)  
    D = sqrt(U.^2 + V.^2);  
      
    %begin filter computations  
    switch type  
        case 'ideal'  
            H = double(D <= D0);  
        case 'btw'  
            if nargin == 4  
                n = 1;  
            end  
            H = 1./(1+(D./D0).^(2*n));  
        case 'gaussian'  
            H = exp(-(D.^2)./(2*(D0^2)));  
        otherwise   
            error('Unkown filter type');  
      
    end  
    

    gscale函数参考代码:

    function g = gscale(f, varargin)
    %GSCALE Scales the intensity of the input image.
    %   G = GSCALE(F, 'full8') scales the intensities of F to the full
    %   8-bit intensity range [0, 255].  This is the default if there is
    %   only one input argument.
    %
    %   G = GSCALE(F, 'full16') scales the intensities of F to the full
    %   16-bit intensity range [0, 65535].
    %
    %   G = GSCALE(F, 'minmax', LOW, HIGH) scales the intensities of F to
    %   the range [LOW, HIGH]. These values must be provided, and they
    %   must be in the range [0, 1], independently of the class of the
    %   input. GSCALE performs any necessary scaling. If the input is of
    %   class double, and its values are not in the range [0, 1], then
    %   GSCALE scales it to this range before processing.
    %
    %   The class of the output is the same as the class of the input.
     
    %   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
    %   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
    %   $Revision: 1.5 $  $Date: 2003/11/21 14:36:09 $
     
    if length(varargin) == 0 % If only one argument it must be f.
       method = 'full8';
    else
       method = varargin{1};
    end
     
    if strcmp(class(f), 'double') & (max(f(:)) > 1 | min(f(:)) < 0)
       f = mat2gray(f);
    end
     
    % Perform the specified scaling.
    switch method
    case 'full8'
       g = im2uint8(mat2gray(double(f)));
    case 'full16'
       g = im2uint16(mat2gray(double(f)));
    case 'minmax'
       low = varargin{2}; high = varargin{3};
       if low > 1 | low < 0 | high > 1 | high < 0
          error('Parameters low and high must be in the range [0, 1].')
       end
       if strcmp(class(f), 'double')
          low_in = min(f(:));
          high_in = max(f(:));
       elseif strcmp(class(f), 'uint8')
          low_in = double(min(f(:)))./255;
          high_in = double(max(f(:)))./255;
       elseif strcmp(class(f), 'uint16')
          low_in = double(min(f(:)))./65535;
          high_in = double(max(f(:)))./65535;   
       end
       % imadjust automatically matches the class of the input.
       g = imadjust(f, [low_in high_in], [low high]);  
    otherwise
       error('Unknown method.')
    end
    

    运行结果:

    五.结果分析

    (1)由第一个图可以看出,图像经过低通滤波器,图像的高频分量滤掉了,图像变得平滑。

    (2)由第二个图可以看出,图像不同的截止频率,出来的图像也不同,系数小的效果强。

     

  • 相关阅读:
    Rhino 是一个完全使用Java语言编写的开源JavaScript实现。Rhino通常用于在Java程序中,为最终用户提供脚本化能力。它被作为J2SE 6上的默认Java脚本化引擎。
    VS的快捷键F12改成和ECLIPSE一样用ctrl+点击下载线
    到底要不要拆分函数
    “DllRegisterServer的调用失败”问题解决办法(转)
    select into的缺点
    win8 下脚本安装IIS
    快速打开IIS的方法
    windows下硬盘的逻辑结构
    sql server 2005/2008R2 报“红叉”错,即“不允许所请求的注册表访问权”的错误
    rundll32.exe的相关使用语句
  • 原文地址:https://www.cnblogs.com/fydeblog/p/7069942.html
Copyright © 2011-2022 走看看