zoukankan      html  css  js  c++  java
  • uoj198【CTSC2016】时空旅行

    传送门:http://uoj.ac/problem/198

    【题解】

    首先y、z是没有用的。。

    然后式子就是w = (x0-xi)^2+ci的最小值,化出来可以变成一个直线的形式。

    然后我们可以用线段树维护dfs序上的每个点。

    每个点维护经过这个点的所有直线(标记永久化),也就是维护上凸壳。

    然后我们把询问按照x排序,每次决策点只会后移。所以复杂度就有保证啦!

    真**难写

    还有一个十分有趣的事实啊

    我用一个号交完ac在另一个号再交就RE了啊。。。

    不管了反正过了

    # include <vector>
    # include <stdio.h>
    # include <string.h>
    # include <algorithm>
    // # include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    const int M = 5e5 + 10;
    const int mod = 1e9+7;
    
    # define RG register
    # define ST static
    
    int n, q, s[M], ps[M];
    ll c0, ans[M];
    vector<int> b[M];
    struct planet {
        int x; ll c;
        planet() {}
        planet(int x, ll c) : x(x), c(c) {}
        friend bool operator < (planet a, planet b) {
            return a.x<b.x;
        }
    }p[M];
    
    struct line {
        ll k, b;
        line() {}
        line(ll k, ll b) : k(k), b(b) {}
        inline ll set(int x) {
            return k*(ll)x+b;
        }
    };
    
    struct quest {
        int s, x0, id;
        quest() {}
        quest(int s, int x0, int id) : s(s), x0(x0), id(id) {}
        friend bool operator < (quest a, quest b) {
            return a.x0<b.x0;
        }
    }qu[M];
    
    int head[M], nxt[M], to[M], tot, in[M], out[M], DFN;
    inline void add(int u, int v) {
        ++tot; nxt[tot] = head[u]; head[u] = tot; to[tot] = v;
    }
    
    inline void dfs(int x) {
        in[x] = ++DFN;
        for (int i=head[x]; i; i=nxt[i]) dfs(to[i]);
        out[x] = DFN;
    }
    
    inline bool cmp(int x, int y) {
        return p[x].x<p[y].x;
    }
    
    inline bool cmp_b(int x, int y) {
        return in[x] < in[y];
    }
    
    namespace SMT {
        const int M = 2e6 + 10;
        vector<line> w[M];
        int lst[M];
        
        inline bool canout(line a, line b, line c) {
            if(b.k == c.k) return b.b >= c.b;
            return 1.0*(b.b-a.b)*(a.k-c.k) > 1.0*(c.b-a.b) * (a.k-b.k);
        }
        
        inline void change(int x, int l, int r, int L, int R, line add) {
            if(L <= l && r <= R) {
                if(w[x].size()) {
                    while(w[x].size() > 1 && canout(w[x][w[x].size()-2], w[x][w[x].size()-1], add)) w[x].pop_back();
                    w[x].push_back(add);
                } else w[x].push_back(add);
                return ;
            }
            int mid = l+r>>1;
            if(L <= mid) change(x<<1, l, mid, L, R, add);
            if(R > mid) change(x<<1|1, mid+1, r, L, R, add);
        }
        
        inline ll query(int x, int l, int r, int pos, int x0) {
            while(lst[x]+1 < w[x].size() && w[x][lst[x]].set(x0) > w[x][lst[x]+1].set(x0)) ++lst[x];
            ll cur = (w[x].size() ? w[x][lst[x]].set(x0) : 1e18);
            if(l == r) return cur;
            int mid = l+r>>1;
            if(pos <= mid) return min(cur, query(x<<1, l, mid, pos, x0));
            else return min(cur, query(x<<1|1, mid+1, r, pos, x0));
        }
        
        inline void change(int L, int R, line add) {
            if(L>R) return;
            change(1, 1, DFN, L, R, add);
        }
        inline ll query(int pos, int x0) {
            return query(1, 1, DFN, pos, x0); 
        } 
    }
    
    int main() {
        scanf("%d%d%lld", &n, &q, &c0);
        for (int i=1, op, fr, id, x, c; i<n; ++i) {
            ps[i] = i;
            scanf("%d%d%d", &op, &fr, &id);
            if(op == 0) {
                scanf("%d%*d%*d%lld", &x, &c);
                s[id] = i;
                p[id] = planet(x, c);
            } else b[id].push_back(i);
            add(fr, i);
        }
        dfs(0);
        sort(ps+1, ps+n, cmp);
        for (int i=1, t; i<n; ++i) {
            if(s[ps[i]]) {
                int id = ps[i], se = s[id];
                line L = line(-2ll*p[id].x, 1ll*p[id].x*p[id].x+p[id].c);
                if(b[id].size()) {
                    sort(b[id].begin(), b[id].end(), cmp_b);
                    t = b[id].size();
                    SMT::change(in[se], in[b[id][0]]-1, L);
                    SMT::change(out[b[id][t-1]]+1, out[se], L);
                    for (int j=1; j<t; ++j)
                        SMT::change(out[b[id][j-1]]+1, in[b[id][j]]-1, L);
                } else SMT::change(in[se], out[se], L);
            }
        }
        for (int i=1; i<=q; ++i) {
            scanf("%d%d", &qu[i].s, &qu[i].x0);
            qu[i].id=i;
        }
        sort(qu+1, qu+q+1);
        for (int i=1; i<=q; ++i)
            ans[qu[i].id] = 1ll * qu[i].x0 * qu[i].x0 + min(c0, SMT::query(in[qu[i].s], qu[i].x0));
        for (int i=1; i<=q; ++i) printf("%lld
    ", ans[i]);
        return 0;
    }
    View Code
  • 相关阅读:
    python 协程
    python 进程池的使用
    python 多进程数据交互及共享
    python 多进程
    技术博客与技术日记
    理解闭包
    jWriter一个基于jQuery的阅读写作网站的效果库
    ubuntu下phpmyadmin配置问题解决
    避免明文保存用户密码
    如何用css实现类似简书的纵向导航/竖排导航
  • 原文地址:https://www.cnblogs.com/galaxies/p/uoj198.html
Copyright © 2011-2022 走看看