zoukankan      html  css  js  c++  java
  • 【LeetCode】34. 在排序数组中查找元素的第一个和最后一个位置

    题目

    给定一个按照升序排列的整数数组 nums,和一个目标值 target。找出给定目标值在数组中的开始位置和结束位置。
    你的算法时间复杂度必须是 O(log n) 级别。
    如果数组中不存在目标值,返回 [-1, -1]。

    示例 1:

    输入: nums = [5,7,7,8,8,10], target = 8
    输出: [3,4]
    

    示例 2:

    输入: nums = [5,7,7,8,8,10], target = 6
    输出: [-1,-1]
    

    本题同【剑指Offer】面试题53 - I. 在排序数组中查找数字 I

    思路一:二分查找

    代码

    时间复杂度:O(logn)
    空间复杂度:O(1)

    class Solution {
    public:
        vector<int> searchRange(vector<int>& nums, int target) {
            if (nums.empty()) return {-1, -1};
            int left = searchLeft(nums, target);
            int right = searchRight(nums, target);
            return {left, right};
        }
    
        int searchLeft(vector<int> &nums, int target) {
            int left = 0, right = nums.size() - 1;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] == target) {
                    if (mid == 0 || (mid - 1 >= 0 && nums[mid - 1] != target)) {
                        return mid;
                    }
                    right = mid - 1;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
            return -1;
        }
    
        int searchRight(vector<int> &nums, int target) {
            int left = 0, right = nums.size() - 1;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] == target) {
                    if (mid == nums.size() - 1 || (mid + 1 <= nums.size() - 1 && nums[mid + 1] != target)) {
                        return mid;
                    }
                    left = mid + 1;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
            return -1;
        }
    };
    

    另一种写法

    class Solution {
    public:
        vector<int> searchRange(vector<int>& nums, int target) {
            if (nums.empty()) return {-1, -1};
            int left = searchLeft(nums, target);
            int right = searchRight(nums, target);
            return {left, right};
        }
    
        int searchLeft(vector<int> &nums, int target) {
            int left = 0, right = nums.size() - 1;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] == target) {
                    //一直向左找
                    while (mid - 1 >= 0 && nums[mid - 1] == target) {
                        --mid;
                    }
                    return mid;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
            return -1;
        }
    
        int searchRight(vector<int> &nums, int target) {
            int left = 0, right = nums.size() - 1;
            while (left <= right) {
                int mid = left + (right - left) / 2;
                if (nums[mid] == target) {
                    //一直向右找
                    while (mid + 1 <= nums.size() - 1 && nums[mid + 1] == target) {
                        ++mid;
                    }
                    return mid;
                } else if (nums[mid] < target) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
            return -1;
        }
    };
    

    思路二:STL

    lower_bound:返回一个迭代器,指向键值 >= key的第一个元素
    upper_bound:返回一个迭代器,指向键值 > key的第一个元素

    代码

    时间复杂度:O(logn)
    空间复杂度:O(1)

    class Solution {
    public:
        vector<int> searchRange(vector<int>& nums, int target) {
            if (nums.empty()) return {-1, -1};
            auto left = lower_bound(nums.begin(), nums.end(), target);
            auto right = upper_bound(nums.begin(), nums.end(), target);
            if (left == right) return {-1, -1};
            return {left - nums.begin(), right - nums.begin() - 1};
        }
    };
    
  • 相关阅读:
    【CF732D】Exams(线性扫描,贪心,二分)
    【CF652C】Foe Pairs(线性扫描)
    【CF645D】 Robot Rapping Results Report(拓扑排序,二分)
    【BZOJ入门3189】 猜数字(数学,搜索)
    【CF559C】 Gerald and Giant Chess(计数,方案数DP,数论)
    【NOIP2016练习&BZOJ2125】T3 sp (树上倍增,最短路)
    【NOIP2016练习】T2 forest (树形DP,数论)
    【NOIP2016练习】T2 花花的聚会 (树形DP,倍增)
    【CF713C】Sonya and Problem Wihtout a Legend(离散化,DP)
    js函数知识点
  • 原文地址:https://www.cnblogs.com/galaxy-hao/p/12669640.html
Copyright © 2011-2022 走看看