Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
1 / 2 3
Return 6
.
树结构显然用递归来解,解题关键:
1、对于每一层递归,只有包含此层树根节点的值才可以返回到上层。否则路径将不连续。
2、返回的值最多为根节点加上左右子树中的一个返回值,而不能加上两个返回值。否则路径将分叉。
在这两个前提下有个需要注意的问题,最上层返回的值并不一定是满足要求的最大值,
因为最大值对应的路径不一定包含root的值,可能存在于某个子树上。
因此解决方案为设置全局变量maxSum,在递归过程中不断更新最大值。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: int maxSum; Solution() { maxSum = INT_MIN; } int maxPathSum(TreeNode* root) { Helper(root); return maxSum; } int Helper(TreeNode *root) { if(!root) return INT_MIN; else { int left = Helper(root->left); int right = Helper(root->right); if(root->val >= 0) {//allways include root if(left >= 0 && right >= 0) maxSum = max(maxSum, root->val+left+right); else if(left >= 0 && right < 0) maxSum = max(maxSum, root->val+left); else if(left < 0 && right >= 0) maxSum = max(maxSum, root->val+right); else maxSum = max(maxSum, root->val); } else { if(left >= 0 && right >= 0) maxSum = max(maxSum, max(root->val+left+right, max(left, right))); else if(left >= 0 && right < 0) maxSum = max(maxSum, left); else if(left < 0 && right >= 0) maxSum = max(maxSum, right); else maxSum = max(maxSum, max(root->val, max(left, right))); } //return only one path, do not add left and right at the same time return max(root->val+max(0, left), root->val+max(0, right)); } } };