N-Queens II
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
简单的回溯法。
cur[i] == j 代表第i行的皇后位于第j列。
对于每一行,尝试所有列,
如果当前行尝试的位置不与前面所有行的位置冲突,则可以递归到下一行。
class Solution { public: int totalNQueens(int n) { int count = 0; vector<int> cur; Helper(count, cur, 0, n); return count; } void Helper(int& count, vector<int> cur, int pos, int n) { if(pos == n) count ++; else { for(int i = 0; i < n; i ++) { cur.push_back(i); if(check(cur)) Helper(count, cur, pos+1, n); cur.pop_back(); } } } bool check(vector<int> cur) { int size = cur.size(); int loc = cur[size-1]; for(int i = 0; i < size-1; i ++) { //never same row //col if(cur[i] == loc) return false; //diag if(abs(cur[i]-loc) == abs(i-size+1)) return false; } return true; } };