zoukankan      html  css  js  c++  java
  • 【Babble】批量学习与增量学习、稳定性与可塑性矛盾的乱想

    一、开场白

    做机器学习的对这几个词应该比较熟悉了。

    最好是拿到全部数据,那就模型慢慢选,参数慢慢调,一轮一轮迭代,总能取得不错效果。

    但是面对新来数据,怎么能利用已经训练好的模型,把新的信息加进去?

    所以有很多人,包括我们组,一直想做好在线增量式学习。

    (1)来一波新数据,(2)抽信息更新模型,(3)扔掉那些数据

    用完的数据就扔掉,所以输入数据的顺序,会影响很大。

    二、暑假结束了

    在暑假的最后一天,发现过去的两周没有被最优利用。

    如果我提前知道我的暑假有整整两周,那么我可以把python系统地学一遍,或者把C++从头复习一遍。

    但是我暑假的状态属于来一天过一天,我并不知道暑假什么时候结束。

    我就只能在懒散之余,把每天仅有的一点学习时间,用在可以速成的、我最感兴趣的东西。

    比如看一篇文章,做两个折磨过我的题。

    每天还算过的充实,但是回头去看整体,还是觉得有点可惜。

    三、人生是一次在线增量学习

    时间再拉大一点,比如长期计划。

    人的想法是会变的,社会是会变的,

    依照今天的想法,依照社会现状,制定了三年的学习、生活目标与规划,

    过了半年、一年,有了一些阶段性成果,

    幸运的情况是,实现了自己的追求、符合行业发展,庆幸及早的规划,

    也有可能是,偏离了当前的追求、偏离了行业发展,甚至可能觉得过去的规划是一种误导。

    这样来看,“早知如此,何必当初” 就是现实生活的稳定性与可塑性矛盾。

    人生是一次彻头彻尾的在线增量学习,没有岁月可回头,愿无岁月可回头。

    四、机器学习科学家都是哲学家

    我们可以猜测明天,但不能预见明天。

    为了明天更好的生活,

    我们可以基于<今天>的经验,可以基于<昨天, 今天>的经验,可以基于<去年,今年>的经验。

    利用多少/哪些历史信息,可以最好的预测明天,从而让自己准备好适应明天。

    这真是个哲学问题。

    但是机器学习科学家居然通过调参数就给解出来了。真是一群哲学家!

  • 相关阅读:
    solr dataimport 数据导入源码分析(九)
    正确理解ThreadLocal
    solr dataimport 数据导入源码分析(六)
    solr dataimport 数据导入源码分析(七)
    solr dataimport 数据导入源码分析(八)
    solr dataimport 数据导入源码分析(一)
    solr dataimport 数据导入源码分析(五)
    OpenGL光照、键盘
    OpenGL着色
    OpenGL纹理映射
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4645034.html
Copyright © 2011-2022 走看看