zoukankan      html  css  js  c++  java
  • 【LeetCode】238. Product of Array Except Self

    Product of Array Except Self

    Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].

    Solve it without division and in O(n).

    For example, given [1,2,3,4], return [24,12,8,6].

    Follow up:
    Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)

    就是用减法实现除法。

    注意零的处理。

    class Solution {
    public:
        vector<int> productExceptSelf(vector<int>& nums) {
            int size = nums.size();
            vector<int> ret(size, 0);
            long long product = 1;
            int countZero = 0;
            int ind = -1;   // 0-index
            
            for(int i = 0; i < size; i ++)
            {
                if(nums[i] == 0)
                {
                    countZero ++;
                    ind = i;
                }
            }
            
            //special case for 0
            if(countZero == 0)
            {//no zero
                for(int i = 0; i < size; i ++)
                    product *= nums[i];
                for(int i = 0; i < size; i ++)
                    ret[i] = mydivide(product, nums[i]);
            }
            else if(countZero == 1)
            {//1 zero
                for(int i = 0; i < size; i ++)
                {
                    if(i != ind)
                        product *= nums[i];
                }
                ret[ind] = product; //others are 0s
            }
            else
            {//2 or more zeros
                ;   //all 0s
            }
            
            return ret;
        }
        int mydivide(long long product, int divisor)
        {// guaranteed that divisor is not 0
            int sign = 1;
            if((product < 0) ^ (divisor < 0))
                sign = -1;
            if(product < 0)
                product = -product;
            if(divisor < 0)
                divisor = -divisor;
            //to here, product and divisor are positive
            int ret = 0;
            while(true)
            {
                int part = 1;   //part quotient
                int num = divisor;
                while(product > num)
                {
                    num <<= 1;
                    part <<= 1;
                }
                if(product == num)
                {
                    ret += part;
                    return sign * ret;
                }
                else
                {
                    num >>= 1;
                    part >>= 1;
                    ret += part;
                    product -= num;
                }
            }
        }
    };

  • 相关阅读:
    牛顿迭代法
    C语言补遗
    Manjaro添加开机启动脚本
    tensorboard查看pytorch模型
    Kindle最佳排版记录
    01背包问题详解
    差分法介绍
    BFS详解
    UVA11732 "strcmp()" Anyone?
    LA3942 Remember the Word
  • 原文地址:https://www.cnblogs.com/ganganloveu/p/4675575.html
Copyright © 2011-2022 走看看