zoukankan      html  css  js  c++  java
  • 吴恩达 机器学习EX1学习笔记 MATLAB实现

    前言

    第一部分是关于线性回归
    具体的概念其实在课程视频中都讲的比较清楚,但是在接触第一个练习之前,我一直不知道实际上如何coding,但是通过这种类似程序填空的形式能帮助我们理解这个实现。

    单变量线性回归

    1----读取数据并绘制图形

    %% ======================= Part 2: Plotting =======================
    fprintf('Plotting Data ...
    ')
    data = load('ex1data1.txt');
    X = data(:, 1); y = data(:, 2);
    m = length(y); % number of training examples
    
    % Plot Data
    % Note: You have to complete the code in plotData.m
    plotData(X, y);
    

    2-----计算COST FUNCTION----J(/theta)

    %% =================== Part 3: Cost and Gradient descent ===================
    
    X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
    theta = zeros(2, 1); % initialize fitting parameters
    
    % Some gradient descent settings
    iterations = 1500;
    alpha = 0.01;
    
    fprintf('
    Testing the cost function ...
    ')
    % compute and display initial cost
    J = computeCost(X, y, theta);
    fprintf('With theta = [0 ; 0]
    Cost computed = %f
    ', J);
    fprintf('Expected cost value (approx) 32.07
    ');
    
    % further testing of the cost function
    J = computeCost(X, y, [-1 ; 2]);
    fprintf('
    With theta = [-1 ; 2]
    Cost computed = %f
    ', J);
    fprintf('Expected cost value (approx) 54.24
    ');
    
    

    具体的cost function的计算如下

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    H=X*theta;
    J=sum(1/(2*m)*((H-y).^2));
    
    % =========================================================================
    
    end
    

    需要注意上面的

    H=X*theta;

    这里我们采用向量化的方法,相比于for循环的迭代,能较大的提升程序的简洁性以及效率。这里在吴恩达老师在讲复习线性代数矩阵乘法中有提及。点这里进入这一节的传送门
    3------使cost function最小化,求出/theta
    **这里使用的是梯度下降的方法,在线性回归模型中,还有另一种方法叫做 正规方程法 **
    正规方程法
    正规方程法求/theta,类似于解析式法一步到位,无需迭代这里是在多变量里用到的正规方程法,单变量当然也适用。需要注意X扩展了一列值为1的向量。
    梯度下降法(左为单特征/即n=1,右为多特征变量/即n>=1)
    梯度下降法迭代

    (可选)4—可视化
    其实我认为在线性回归(包括后面的逻辑回归),目的就是求出那个参数,求出参数,问题就可以解决了,就可以用这个 假设方程H去预测值

    %% ============= Part 4: Visualizing J(theta_0, theta_1) =============
    fprintf('Visualizing J(theta_0, theta_1) ...
    ')
    
    % Grid over which we will calculate J
    theta0_vals = linspace(-10, 10, 100);
    theta1_vals = linspace(-1, 4, 100);
    
    % initialize J_vals to a matrix of 0's
    J_vals = zeros(length(theta0_vals), length(theta1_vals));
    
    % Fill out J_vals
    for i = 1:length(theta0_vals)
        for j = 1:length(theta1_vals)
    	  t = [theta0_vals(i); theta1_vals(j)];
    	  J_vals(i,j) = computeCost(X, y, t);
        end
    end
    
    
    % Because of the way meshgrids work in the surf command, we need to
    % transpose J_vals before calling surf, or else the axes will be flipped
    J_vals = J_vals';
    % Surface plot
    figure;
    surf(theta0_vals, theta1_vals, J_vals)
    xlabel('	heta_0'); ylabel('	heta_1');
    
    % Contour plot
    figure;
    % Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
    contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
    xlabel('	heta_0'); ylabel('	heta_1');
    hold on;
    plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);
    
    

    简单的归纳

  • 相关阅读:
    python实例26[查询修改文件的属性]
    [SCM]源码管理 VisualSVN Server+TortoiseSVN
    持续集成之“依赖管理”
    Spoon:在“云”上运行桌面应用程序
    数字签名的验证
    判断Linux/Unix为32位或64位
    持续集成理论和实践的新进展
    [SCM]源码管理 SVN Server
    [BuildRelease Management]Parabuild
    为VM增加磁盘空间
  • 原文地址:https://www.cnblogs.com/gao-hongxiang/p/12342427.html
Copyright © 2011-2022 走看看