Covered Path
The on-board computer on Polycarp's car measured that the car speed at the beginning of some section of the path equals v1 meters per second, and in the end it is v2meters per second. We know that this section of the route took exactly t seconds to pass.
Assuming that at each of the seconds the speed is constant, and between seconds the speed can change at most by d meters per second in absolute value (i.e., the difference in the speed of any two adjacent seconds does not exceed d in absolute value), find the maximum possible length of the path section in meters.
Input
The first line contains two integers v1 and v2 (1 ≤ v1, v2 ≤ 100) — the speeds in meters per second at the beginning of the segment and at the end of the segment, respectively.
The second line contains two integers t (2 ≤ t ≤ 100) — the time when the car moves along the segment in seconds, d (0 ≤ d ≤ 10) — the maximum value of the speed change between adjacent seconds.
It is guaranteed that there is a way to complete the segment so that:
- the speed in the first second equals v1,
- the speed in the last second equals v2,
- the absolute value of difference of speeds between any two adjacent seconds doesn't exceed d.
Output
Print the maximum possible length of the path segment in meters.
Examples
5 6
4 2
26
10 10
10 0
100
Note
In the first sample the sequence of speeds of Polycarpus' car can look as follows: 5, 7, 8, 6. Thus, the total path is 5 + 7 + 8 + 6 = 26 meters.
In the second sample, as d = 0, the car covers the whole segment at constant speed v = 10. In t = 10 seconds it covers the distance of 100 meters.
sol:一开始以为是小学奥数一样的东西,写了一堆特判后发现根本讨论不完,于是彻底自闭
发现是个很裸的dp,dp[i][j]表示第 i 秒,速度为 j 的最大路程
Ps:初速度100,加速度10,加速时间100,要开1105的数组,唯一的坑点
#include <bits/stdc++.h> using namespace std; typedef int ll; inline ll read() { ll s=0; bool f=0; char ch=' '; while(!isdigit(ch)) { f|=(ch=='-'); ch=getchar(); } while(isdigit(ch)) { s=(s<<3)+(s<<1)+(ch^48); ch=getchar(); } return (f)?(-s):(s); } #define R(x) x=read() inline void write(ll x) { if(x<0) { putchar('-'); x=-x; } if(x<10) { putchar(x+'0'); return; } write(x/10); putchar((x%10)+'0'); return; } #define W(x) write(x),putchar(' ') #define Wl(x) write(x),putchar(' ') const int N=2005; int v1,v2,t,d,dp[105][N]; int main() { int i,j,k; R(v1); R(v2); R(t); R(d); memset(dp,-1,sizeof dp); dp[1][v1]=v1; for(i=1;i<t;i++) { for(j=0;j<=i*d+v1;j++) if(dp[i][j]!=-1) { for(k=-d;k<=d;k++) { if(j+k>=0) dp[i+1][j+k]=max(dp[i+1][j+k],dp[i][j]+j+k); } } } // for(i=1;i<=t;i++) // { // for(j=0;j<=v2;j++) printf("%d ",dp[i][j]); puts(""); // } Wl(dp[t][v2]); return 0; } /* Input 5 6 4 2 Output 26 Input 10 10 10 0 Output 100 Input 87 87 2 10 Output 174 Input 1 11 6 2 Output 36 Input 100 1 100 10 Output 29305 input 100 1 100 1 output 5050 */