zoukankan      html  css  js  c++  java
  • Java8集合框架——HashMap源码分析

    java.util.HashMap

    本文目录:

    一、HashMap的特点概述和说明

    关注点 HashMap的相关结论
    是否允许空的 key
    是否允许重复的 key 否,实际上可能会进行覆盖更新
    元素有序:读取数据和存放数据的顺序一致 否,读取和存放都无序
    是否线程安全
    通过 key 进行随机访问的效率 较快
    添加元素的效率

    较快

    涉及扩容、列表转红黑树、遍历列表时相对慢

    删除元素的效率 较快

    这里主要提几点:

    1. Java8 中 HashMap 源码的大方向就是:数组 + 单向链表(数组的元素,Node 实例,包含四个属性:key, value, hash 值和用于单向链表的 next) + 红黑树(链表超过8个元素且总元素个数超过 64 时转换为红黑树),对于hash冲突的元素,使用链表进行存储,每次存储在链表末尾。
    2. capacity:当前数组容量,默认值是 16,自动扩容,但始终保持 2^n,即扩容后数组大小为当前的 2 倍。
    3. loadFactor:负载因子,默认为 0.75
    4. threshold:扩容的阈值,等于 capacity * loadFactor,当元素实际个数 size 大于等于 threshold 时,进行扩容。

      Java8的 HashMap,最大的改变,是使用了数组 + 链表 + 红黑树。当链表中的元素达到了 8 个且总元素个数超过64个时,会将链表转换为红黑树,在这些位置进行查找的时候可以由原来的耗时 O(N),降低到时间复杂度为 O(logN)。另附上简要示意图:

    二、HashMap的内部实现:从内部属性和构造函数说起

    1、常用的类属性

      常用的类属性如下,比如默认容量、负载因子等。

        /**
         * The default initial capacity - MUST be a power of two.
         * 默认的初始容量 16 = 2 ^ 4
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         * 允许的最大容量
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         * 默认的负载因子
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * The bin count threshold for using a tree rather than list for a
         * bin.  Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         * 达到需要转化为红黑树时的链表容量阈值
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         * 红黑树转回链表的下限阈值
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         * 达到需要转化为红黑树时的Map总容量最低阈值
         */
        static final int MIN_TREEIFY_CAPACITY = 64;

      

    2、实例属性

      实例属性,包括内部实际存储元素的数组、Map 的实际大小、实际的负载因子、修改次数等

        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         * 内部实际存储元素的数组
         */
        transient Node<K,V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K,V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         * map的大小,即实际的元素个数
         */
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         * 修改次数,用于 fail-fast 机制校验
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         * 容量阈值,元素个数超过阈值是会进行扩容
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        int threshold;
    
        /**
         * The load factor for the hash table.
         * 负载因子
         * @serial
         */
        final float loadFactor;

      

    3、节点内部类

      这个是实际的元素存储节点。

        /**
         * Basic hash bin node, used for most entries.  (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         */
        static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
            ...
        }

      

    4、构造函数

      几个构造函数中最主要的还是要设定初始的负载因子 loadFactor

        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         * 指定 初始容量 和 负载因子
         * @param  initialCapacity the initial capacity
         * @param  loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *         or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            // 设定负载因子
            this.loadFactor = loadFactor;
            // 设定阈值为 大于等于指定初始容量且最小 的 2^n
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param  initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            // 使用默认的负载因子 0.75
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            // 使用默认负载因子 0.75,而其他使用默认值,包括 阈值 threshold = 0
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param   m the map whose mappings are to be placed in this map
         * @throws  NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            // 使用默认的负载因子 0.75
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor
         *
         * @param m the map
         * @param evict false when initially constructing this map, else
         * true (relayed to method afterNodeInsertion).
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size,说明还没有初始化,进行阈值的预设定
                    float ft = ((float)s / loadFactor) + 1.0F;
                    int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                             (int)ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);    // 大于等于指定容量且最小 的 2^n
                }
                else if (s > threshold)
                    resize();    // 先进行一次扩容
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);    // 内部还会检查是否需要扩容
                }
            }
        }

      

    三、HashMap 的 put 操作

      put 操作的源码如下:

        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * onlyIfAbsent 为 true 时表示不修改已存在的(key 对应的)value
         * @param evict if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            // 因为前面构造器都没有对数组 table 进行初始化,因此第一次进行put操作时需要进行扩容
            // 由于 table 本身为 null,最终也只是新建大小为默认容量 16 的数组而已
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            // 当前 key 对应的具体数组下标,如果对应数组元素为 null,则直接初始化 Node 元素并设置即可
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {  // 说明该下标位置存在相关的元素数据
                Node<K,V> e; K k;
                // 数组对应位置的元素的 key 与 put 操作的 key “相等”
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                // 否则需要判断是链表还是红黑树来执行 put 操作
                // 红黑树节点则按照红黑树的插值方法进行
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    // 执行到这里说明数组的该位置是一个链表
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            // 插入到链表的最后位置
                            p.next = newNode(hash, key, value, null);
                            // binCount 为 7 时触发红黑树转化,明显此时0-6已经有节点了,
                            // 再加上原来的 tab[i](相当于 -1),新插入的是链表的第9个位置
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        // put 操作的 key 与链表中的该位置的 key “相等”
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            // 说明在链表中存在并找到了与 key 一致的节点
                            break;
                        p = e;
                    }
                }
                // 存在旧的 key 与要 put 的 key 一致,考虑是否进行值覆盖,然后返回旧值
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            // 记录修改次数
            ++modCount;
            // 超过阈值,则进行扩容
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }

      

     四、HashMap 的扩容

       HashMap扩容的过程也就是内部数组的扩容,源码如下:

        /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         * 初始化 或者 倍增扩容
         * @return the table
         */
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                // 将数组大小扩大一倍
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold 阈值扩大一倍
            }
            // 有进行初始化容量的设定时会设置 threshold,此时的第一次 put 操作进入这里
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               // zero initial threshold signifies using defaults
                // 没有指定初始容量的 new HashMap(),第一次 put 操作进入这里
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float)newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            // 初始化数组或者创建容量翻倍的数组
            @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {    // 初始化的则会跳过这里直接返回
                // 遍历数组进行节点的迁移
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        // 该位置是单个节点元素,不是数组也不是红黑树,则直接迁移
                        if (e.next == null)
                            newTab[e.hash & (newCap - 1)] = e;
                        else if (e instanceof TreeNode)    // 红黑树时的节点迁移
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order
                            // 链表情况下的迁移
                            // 将链表拆成两个链表,放到新的数组中,并且保留原来的先后顺序
                            // loHead、loTail 对应一条链表,hiHead、hiTail 则对应另一条链表
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                // 第一条链表
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                // 第二条链表的新的位置是 j + oldCap,也比较好理解
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }

      

    五、HashMap 的 get 操作

      get 操作比较直接,流程大致如下:

    1. 计算 key 的 hash 值,根据 hash 找到对应的数组下标即 (table.length - 1) & hash;
    2. 判断对应下标处的节点元素是否正好是要寻找,如是即返回;否,继续下一步;
    3. 如果是红黑树,则用红黑树的方法获取数据;
    4. 如果是链表,则按照链表的方式寻找相应的节点;
    5. 找不到的,返回 null。
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K,V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
        /**
         * Implements Map.get and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @return the node, or null if none
         */
        final Node<K,V> getNode(int hash, Object key) {
            Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
                // 第一个节点的判断
                if (first.hash == hash && // always check first node
                    ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    // 红黑树的走法
                    if (first instanceof TreeNode)
                        return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                    // 链表的遍历
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }

    六、HashMap 的 remove 操作

      源码走起:

        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param  key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
         *         (A <tt>null</tt> return can also indicate that the map
         *         previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
            Node<K,V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
        }
    
        /**
         * Implements Map.remove and related methods
         *
         * @param hash hash for key
         * @param key the key
         * @param value the value to match if matchValue, else ignored
         * @param matchValue if true only remove if value is equal
         * @param movable if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
            Node<K,V>[] tab; Node<K,V> p; int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {    // 先找到对应的数组下标
                Node<K,V> node = null, e; K k; V v;
                // 总是先判断第一个是否是要找的
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    // 红黑树的找法
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                    else {    // 链表的找法
                        do {
                            if (e.hash == hash &&
                                ((k = e.key) == key ||
                                 (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                                     (value != null && value.equals(v)))) {
                    // 红黑树按照红黑树的方式移除
                    if (node instanceof TreeNode)
                        ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                    // 刚好是数组节点的移除
                    else if (node == p)
                        tab[index] = node.next;
                    // 链表的移除
                    else
                        p.next = node.next;
                    // 记录 修改次数 和元素节点的 实际个数
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }

    七、参考

      Java8 中 HashMap 的相关基本操作源码介绍,这里也可以直接参考【Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析,介绍得还是挺详细的。

    备注:关于红黑树和ConcurrentHashMap,有待后续的进一步研究。

  • 相关阅读:
    node vue 项目部署问题汇总
    Java删除空字符:Java8 & Java11
    moco固定QPS接口升级补偿机制
    Selenium4 IDE特性:无代码趋势和SIDE Runner
    JsonPath工具类单元测试
    Mac上测试Internet Explorer的N种方法
    JsonPath工具类封装
    Selenium4 IDE,它终于来了
    质量保障的方法和实践
    JsonPath实践(六)
  • 原文地址:https://www.cnblogs.com/wpbxin/p/8684747.html
Copyright © 2011-2022 走看看