zoukankan      html  css  js  c++  java
  • 蚁群算法

    参考:https://www.cnblogs.com/Leo_wl/p/5665715.html

    蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质,并且现在已用于我们生活的方方面面。

    描述:

    蚂蚁在运动过程中,会留下一种称为信息素的东西,并且会随着移动的距离,播散的信息素越来越少,所以往往在家或者食物的周围,信息素的浓度是最强的,而蚂蚁自身会根据信息素去选择方向,当然信息素越浓,被选择的概率也就越大,并且信息素本身具有一定的挥发作用。 蚂蚁的运动过程可以简单归纳如下:

    1. 当周围没有信息素指引时,蚂蚁的运动具有一定的惯性,并有一定的概率选择其他方向
    2. 当周围有信息素的指引时,按照信息素的浓度强度概率性的选择运动方向
    3. 找食物时,蚂蚁留下家相关的A信息素,找家时,蚂蚁留下食物相关的B信息素,并随着移动距离的增加,洒播的信息素越来越少
    4. 随着时间推移,信息素会自行挥发

    一个简单的例子,如果现在有两条通往食物的路径,一条较长路径A,一条较短路径B,虽然刚开始A,B路径上都有蚂蚁,又因为B比A短,蚂蚁通过B花费的时间较短,随着时间的推移和信息素的挥发,逐渐的B上的信息素浓度会强于A,这时候因为B的浓度比A强,越来越多多蚂蚁会选择B,而这时候B上的浓度只会越来越强。如果蚂蚁一开始只在A上呢,注意蚂蚁的移动具有一定小概率的随机性,所以当一部分蚂蚁找到B时,随着时间的推移,蚂蚁会收敛到B上,从而可以跳出局部最优。

    总结一句话:葛大爷说的哪儿人多我去哪。(最优)

    如果你亲自动手做实验,你会发现,当蚂蚁在一条路径上觅食很久时,你再放置一个近的食物基本没啥效果,你也可以理解为当一只蚂蚁找到一条路径时,过了很久的时间,大多数蚂蚁都选择了这条路径,就在这时候,突然有一只蚂蚁找到了较近的食物,但因为时间过得太久,两条路径上浓度相差太大(浓度越大,被选择的概率就越大),整个系统基本已经停滞了,陷入了局部最优。所以简单的蚂蚁系统是存在一些问题的,如:

    1. 搜索到一定程度,会出现停滞状态,陷入局部最优的情况
    2. 盲目的随机搜索,搜索时间较长

    而影响蚂蚁是否能够找到好的最优解,依赖这几个关键因素:

    1. 信息素怎么洒播(比如维持在一个特地范围的值等)
    2. 信息素怎么挥发(除了全局挥发,可以让蚂蚁自身进行局部挥发等手段)
    3. 通过怎样的方式让蚂蚁选择运动方向,减少盲目性和不必要性(给蚂蚁一点点智能和经验)
    4. 给蚂蚁和环境一定的记忆能力能够帮助减少搜索空间

    如果你感兴趣,可以去看看诸如最大最小蚁群算法、排序蚁群算法、基于遗传算法的蚁群算法等一系列在基本蚁群系统上的优化和改进,他们对于信息素的使用、蚂蚁方向选择等都有一套成熟的数学模型和经验优化参数。

  • 相关阅读:
    HDU 1501 Zipper(DFS)
    HDU 2181 哈密顿绕行世界问题(DFS)
    HDU 1254 推箱子(BFS)
    HDU 1045 Fire Net (DFS)
    HDU 2212 DFS
    HDU 1241Oil Deposits (DFS)
    HDU 1312 Red and Black (DFS)
    HDU 1010 Tempter of the Bone(DFS+奇偶剪枝)
    HDU 1022 Train Problem I(栈)
    HDU 1008 u Calculate e
  • 原文地址:https://www.cnblogs.com/gaozhang12345/p/9437346.html
Copyright © 2011-2022 走看看