zoukankan      html  css  js  c++  java
  • HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘


    Chessboard

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 335    Accepted Submission(s): 168


    Problem Description
    Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares tiled.
     

    Input
    There are multiple test cases in the input file.
    First line contain the number of cases T (T10000). 
    In the next T lines contain T cases , Each case has two integers n and k. (1n,k100)
     

    Output
    Print the maximum number of chessboard squares tiled.
     

    Sample Input
    2 6 3 5 3
     

    Sample Output
    36 24
     

    Source
     
    用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,问正方形棋盘最多能被覆盖多少。
    规律就是:假设n<k。肯定不行。
    定义mod=n%k;
    假设(mod<=k/2),结果为:n*n-mod*mod;
    否则结果为:n*n-(k-mod)*(k-mod);
    //0MS	228K
    #include<stdio.h>
    int main()
    {
        int t,n,k;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&k);
            if(n<k){printf("0
    ");continue;}
            int mod=n%k;
            if(mod<=k/2)printf("%d
    ",n*n-mod*mod);
            else printf("%d
    ",n*n-(k-mod)*(k-mod));
        }
        return 0;
    }
    


  • 相关阅读:
    Docker理解
    提高服务器并发量,有关系统配置的常规方法
    Linux EXT 文件系统 详解
    jvm入门
    2020-1-08.运维面试题总结
    hexo+gitee
    rsync
    haddop3.2.1完全分布式安装
    zabbix02
    zabbix监控工具问题集
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/7145372.html
Copyright © 2011-2022 走看看