zoukankan      html  css  js  c++  java
  • 【组队赛三】-D 优先队列 cf446B

    DZY Loves Modification
    Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
    Submit

    Status

    Practice

    CodeForces 446B
    Description
    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input
    The first line contains four space-separated integers n, m, k and p(1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output
    Output a single integer — the maximum possible total pleasure value DZY could get.

    Sample Input
    Input
    2 2 2 2
    1 3
    2 4
    Output
    11
    Input
    2 2 5 2
    1 3
    2 4
    Output
    11
    Hint
    For the first sample test, we can modify: column 2, row 2. After that the matrix becomes:


    1 1
    0 0

    For the second sample test, we can modify: column 2, row 2, row 1, column 1, column 2. After that the matrix becomes:


    -3 -3
    -2 -2
    <span style="color:#3333ff;">/*
    _______________________________________________________________________________________
    
           author    :   Grant yuan
           time      :   2014.7.21
           algorithm :   priority_queue
           explain   :   首先对行和列在1到k的范围内分别求解,然后求出一个满足i和k-i的最大值,
                         注意终于的结果中减去反复计算的,还有会測试大于int类型的数据。 
    —————————————————————————————————————————————————————————————————————————————————————————
    */
        
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #include<functional>
    using namespace std;
    #define INF 999999999;
    
    priority_queue<__int64>q1;
    priority_queue<__int64>q2;
    __int64 m,n,k,p,h;
    __int64 a[1003][1003];
    __int64 s1[1003],s2[1003];
    __int64 sum1[1000003],sum2[1000003];
    __int64 res,ans,hh;
    
    int main()
    {
        cin>>n>>m>>k>>p;
        ans=INF;
        ans=-ans*ans;
        memset(s1,0,sizeof(s1));
        memset(s2,0,sizeof(s2));
        memset(sum1,0,sizeof(sum1));
        memset(sum2,0,sizeof(sum2));
        while(!q1.empty())
          q1.pop();
        while(!q2.empty())
           q2.pop();
    
        for(int i=0;i<n;i++)
          for(int j=0;j<m;j++){
            scanf("%I64d",&a[i][j]);
            s1[i]+=a[i][j];
            s2[j]+=a[i][j];}
    
        for(int i=0;i<n;i++)
          q1.push(s1[i]);
    
         for(int i=0;i<m;i++)
           q2.push(s2[i]);
    
        for(int i=1;i<=k;i++)
        {
            h=q1.top();q1.pop();
            if(i==1)sum1[i]=h;
            else sum1[i]=sum1[i-1]+h;
            h-=m*p;
            q1.push(h);
        }
         for(int i=1;i<=k;i++)
        {
            h=q2.top();q2.pop();
            if(i==1)sum2[i]=h;
            else sum2[i]=sum2[i-1]+h;
            h-=n*p;
            q2.push(h);
        }
    
        for(int i=0;i<=k;i++)
            {
                res=sum1[i]+sum2[k-i];
                ans=max(ans,res-i*p*(k-i));
            }
    
        cout<<ans<<endl;
        return 0;
    
    }
    </span>


  • 相关阅读:
    jsp和servlet有什么区别?
    JavaScript中null、undefined有什么区别?
    Java中的信号量Semaphore
    Java中实现线程通信方式有哪些?
    说说对于sychronized同步锁的理解
    线程的run()方法和start()方法有什么区别?
    高并发大型网站架构设计
    高并发高流量网站架构(转)
    构建高并发高可用的电商平台架构实践
    自己搭建CDN服务器静态内容加速-LuManager CDN使用教程
  • 原文地址:https://www.cnblogs.com/gavanwanggw/p/7363647.html
Copyright © 2011-2022 走看看