Description
反正切函数可展开成无穷级数,有例如以下公式
(当中0 <= x <= 1) 公式(1)
使用反正切函数计算PI是一种经常使用的方法。比如,最简单的计算PI的方法:
PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...) 公式(2)
然而,这样的方法的效率非常低。但我们能够依据角度和的正切函数公式:
tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)] 公式(3)
通过简单的变换得到:
arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)] 公式(4)
利用这个公式。令p=1/2,q=1/3,则(p+q)/(1-pq)=1。有
arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)
使用1/2和1/3的反正切来计算arctan(1)。速度就快多了。
我们将公式(4)写成例如以下形式
arctan(1/a)=arctan(1/b)+arctan(1/c)
当中a,b和c均为正整数。
我们的问题是:对于每个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于随意的a都存在整数解。假设有多个解,要求你给出b+c最小的解。
Input
输入文件里仅仅有一个正整数a,当中 1 <= a <= 60000。
Output
输出文件里仅仅有一个整数,为 b+c 的值。
Sample Input
1
Sample Output
5
题意:本题在给定1/a=(1/b+1/c)/1-(1/a*(1/b))的情况下,要求最小的a+b,每个例子给定a。假设我们枚举b和c的话。时间消耗不起,我们自然想到把b,c表示为和a相关的等式。顾设b=a+m,c=a+n,带入上式化简得(a*a+1)=m*n,如今仅仅要逆序枚举m或者n就能够了。
ac代码例如以下:
///@zhangxiaoyu
///2015/8/13
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
int main()
{
LL a;
int i;
while(~scanf("%lld",&a))
{
for(i=a;i>=1;i--)
{
if((a*a+1)%i==0)
break;
}
LL ans;
ans=i+(a*a+1)/i+2*a;
printf("%lld
",ans);
}
return 0;
}