zoukankan      html  css  js  c++  java
  • ZOJ 3827 Information Entropy 水



    Information Entropy

    Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

    Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

    Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

    Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

    Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2, ..., xn} and probability mass function P(X) as:

    H(X)=E(ln(P(x)))

    Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

    H(X)=i=1nP(xi)log b(P(xi))

    Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e, and dit (or digit) for b = 10 respectively.

    In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

    0log b(0)=limp0+plog b(p)

    Your task is to calculate the entropy of a finite sample with N values.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

    In the next line, there are N non-negative integers P1P2, .., PNPi means the probability of the i-th value in percentage and the sum of Pi will be 100.

    Output

    For each test case, output the entropy in the corresponding unit.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    3
    3 bit
    25 25 50
    7 nat
    1 2 4 8 16 32 37
    10 dit
    10 10 10 10 10 10 10 10 10 10
    

    Sample Output

    1.500000000000
    1.480810832465
    1.000000000000
    

    Author: ZHOU, Yuchen
    Source: The 2014 ACM-ICPC Asia Mudanjiang Regional Contest



    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    using namespace std;
    
    double p[200];
    
    double xxx(int kind,double x)
    {
        if(kind==1) return log(x);
        else if(kind==2) return log2(x);
        else return log10(x);
    }
    
    int main()
    {
        int T_T;
        scanf("%d",&T_T);
        while(T_T--)
        {
            int n; char op[20];
            scanf("%d%s",&n,op);
            double ans=0.0;
            int kind = 1;
            if(op[0]=='b') kind=2;
            else if(op[0]=='d') kind=3;
            for(int i=0;i<n;i++)
            {
                scanf("%lf",p+i);
                if(p[i]==0) continue;
                p[i]/=100.;
                ans+=-1*p[i]*xxx(kind,p[i]);
            }
            printf("%.10lf
    ",ans);
        }
        return 0;
    }
    



  • 相关阅读:
    Tensorflowlite移植ARM平台iMX6
    人生信条集
    浅谈聚类
    常用距离度量方法大全
    sklearn学习小结
    SpringBoot 2.x版本+MultipartFile设置指定文件上传大小
    SpringBoot无法访问webapp目录下的文件
    idea搜索不到任何插件
    Caused by: org.springframework.data.mapping.PropertyReferenceException: No property id found for type Users!
    Annotation-specified bean name 'userDaoImpl' for bean class [***] conflicts with existing, non-compatible bean definition of same name and class [***]
  • 原文地址:https://www.cnblogs.com/gcczhongduan/p/5412271.html
Copyright © 2011-2022 走看看