zoukankan      html  css  js  c++  java
  • hdu1159-Common Subsequence(DP:最长公共子序列LCS)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 49216    Accepted Submission(s): 22664
    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
    Sample Input
    abcfbc abfcab
    programming
    contest abcd mnp
    Sample Output
    4
    2
    0
     
    Source

    代码:

    #include<iostream>
    #include<string.h>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    const int  maxnum = 1000 + 5;
    int dp[maxnum][maxnum];
    #define max(x,y){x>y?x:y}
    void DP_LCS(char str1[], char str2[])
    {
        memset(dp, 0, sizeof(dp));
        int i, j;
        for (i = 0; i < strlen(str1); i++)
        {
            for (j = 0; j < strlen(str2); j++)
            {
                if ( strlen(str1)==0 || strlen(str2) == 0)//边界情况:如果有个字符串长度为0
                {
                    dp[i+1][j+1] = 0;//公共子序列为0
                }
                if (str1[i] == str2[j])//第一种情况:a[i]==b[j]  A的前i个,B的前j个;
                {
                    dp[i+1][j+1] = dp[i][j] + 1;//直接加1
                }
                else//第二、三种情况 dp[i][j]=dp[i-1][j]||dp[i][j]=dp[i][j-1]  A的前i-1个,B的前j个;A的前i个,B的前j-1个;
                {
                    dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
                }
            }
        }
        cout<< dp[strlen(str1)][strlen(str2)]<<endl;
    }
    int main()
    {
        char  str1[maxnum], str2[maxnum];
        int N;
        while (cin >> str1 >> str2)
        {
            DP_LCS(str1, str2);
        }
        return 0;
    }
  • 相关阅读:
    [Leetcode 56] 55 Jump Game
    [Leetcode 57] 61 Rotate List
    [Leetcode 61] 73 Set Matrix Zeros
    [Leetcode 62] 74 Search a 2D Matrix
    [Leetcode 64] 78 Subsets
    [Leetcode 63] 77 Combinations
    [Leetcode 58] 63 Unique Path II
    python学习笔记第1章节 基础知识
    python学习笔记第2章节 分支,循环,还有条件
    visual studio 2008 试用版评估期已结束的解决方法(转载)
  • 原文地址:https://www.cnblogs.com/gcter/p/9859324.html
Copyright © 2011-2022 走看看