zoukankan      html  css  js  c++  java
  • hdu1159-Common Subsequence(DP:最长公共子序列LCS)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 49216    Accepted Submission(s): 22664
    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
    Sample Input
    abcfbc abfcab
    programming
    contest abcd mnp
    Sample Output
    4
    2
    0
     
    Source

    代码:

    #include<iostream>
    #include<string.h>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    const int  maxnum = 1000 + 5;
    int dp[maxnum][maxnum];
    #define max(x,y){x>y?x:y}
    void DP_LCS(char str1[], char str2[])
    {
        memset(dp, 0, sizeof(dp));
        int i, j;
        for (i = 0; i < strlen(str1); i++)
        {
            for (j = 0; j < strlen(str2); j++)
            {
                if ( strlen(str1)==0 || strlen(str2) == 0)//边界情况:如果有个字符串长度为0
                {
                    dp[i+1][j+1] = 0;//公共子序列为0
                }
                if (str1[i] == str2[j])//第一种情况:a[i]==b[j]  A的前i个,B的前j个;
                {
                    dp[i+1][j+1] = dp[i][j] + 1;//直接加1
                }
                else//第二、三种情况 dp[i][j]=dp[i-1][j]||dp[i][j]=dp[i][j-1]  A的前i-1个,B的前j个;A的前i个,B的前j-1个;
                {
                    dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
                }
            }
        }
        cout<< dp[strlen(str1)][strlen(str2)]<<endl;
    }
    int main()
    {
        char  str1[maxnum], str2[maxnum];
        int N;
        while (cin >> str1 >> str2)
        {
            DP_LCS(str1, str2);
        }
        return 0;
    }
  • 相关阅读:
    【bzoj2500】幸福的道路 树形dp+单调队列
    【ARC069F】Flags 2-sat+线段树优化建图+二分
    【bzoj2437】[Noi2011]兔兔与蛋蛋 二分图最大匹配+博弈论
    剑指offer——树的子结构
    剑指offer——反转链表
    腾讯算法岗面试算法题——计数排序
    作业帮面试题
    剑指offer——重建二叉树
    剑指offer——二维数组中的查找
    删除链表中重复的结点
  • 原文地址:https://www.cnblogs.com/gcter/p/9859324.html
Copyright © 2011-2022 走看看