zoukankan      html  css  js  c++  java
  • 机器人学 —— 估计和学习-第一周

    第一周 you learned about how to use Gaussian Models to estimate and learn from uncertain data. 

    第二周 we saw how to track these distributions over time in week two using the Kalman Filter. 

    第三周, you learn about robotic mapping and how to represent uncertainty in the objects in the environment around the robot. 
    第四周, you learn how robots can keep track of their pose over time, using a particle filter for localization

    1.1 Introduction

    1.2 Single Dimensional Gaussian

    1.2.1 1D Gaussian Distribution

    yellow ball example: 使用高斯模型来描述HSV空间的H通道中,某个像素是否属于黄色球的概率。

    Advantage:only use two parameters instead of all pixels in the image

    Question: How to estimate two parameters in gaussian model?

    1.2.2 Maximum Likelihood Estimate of Gaussian Model Parameters

    Answer:  How to estimate two parameters in gaussian model?

    The derivation process of the MLE for univariate gaussian in supplementary

    1.3 Multivariate Gaussian

    1.3.1 Multivariate Gaussian Distribution

    red ball example: 使用多变量高斯模型描述RGB空间中,某个像素是否属于红色球的概率。

    Multivariate Gaussian

     

    sigma is a square matrix;

    |sigma| : determinant of sigma

    The correlation component represents how much one variable is related to another one.

    1) Positive Definite: all eigenvalues of sigma must be positive;

    2) We can always find the coordinate transformation which makes the shape appear symmetric even when the covariance matrix has none zero correlation terms.

    How to model the red ball example?

    Q: How to estimate parameters of the multivariate gaussian model?

     1.3.2 MLE of Multivariate Gaussian

    Answer: How to estimate parameters of the multivariate gaussian model.

    The derivation process of the MLE for multivariate gaussian in supplementary

     

     come back to the color ball example:

    From the contours in the plot, we can check that the red and blue channel are correlated negatively in the model.

    1.4 Mixture of Gaussian

    1.4.1 Gaussian Mixture Model(GMM)

    Limitations of Single Gaussian

    Description, black line is the GMM.

    red ball example

    Try to use 2D gaussian model to represent values in R and G channels.

    Try to use GMM to represent values in R and G channels

    Mathematics model

    The sum of wk is 1, which ensure the integral of GMM is 1.

    Three disadvantages:

    1) more parameters;

    2) No analytic solution

    3) overfitting

    1.4.2 GMM Parameter Estimation via EM

     

    w = 1/k, to simplify the deduction process.

    Let's begin to find the maximum likelihood estimate of GMM parameters 

    more detail about deduction plz refer to supplementary

    EM for GMM

        

        

    1.4.3 Expectation-Maxization(EM)

    EM as lower-bound maximization

    introduce 3 concepts:

    (1) Jensen's inequality(详见课程ppt)

    如ppt中所定义,ln对数函数是凹函数,积分的函数值大于函数的积分值。

     

    (2) Latent variable and marginal probability

    引入潜在变量Z。Z的来源参见GMM。

    找出Z的分布q,从而确定极大似然估计的lower bound。

    (3) procedure : E-step and M-step(详见课程ppt)

     

  • 相关阅读:
    深度学习调参笔记(trick)
    Linux调用Kaggle API下载数据
    Jupyter Notebook 入门指南
    ondyari / FaceForensics配置指南
    python读写文件
    Federated Learning with Matched Averaging
    Advances and Open Problems in Federated Learning
    使用标准输入对话框
    各类位置信息
    标准对话框的使用
  • 原文地址:https://www.cnblogs.com/gdut-gordon/p/10065662.html
Copyright © 2011-2022 走看看