到指定目录下,创建个项目
进到 spiders 目录 创建执行文件,并命名
运行调试
执行代码,:
# -*- coding: utf-8 -*- import scrapy from ..items import TenXunItem class TenxunSpider(scrapy.Spider): name = 'tenxun' # allowed_domains = ['tenxun.com'] # 域名范围 start_urls = ['https://hr.tencent.com/position.php?lid=&tid=87&keywords'] burl = 'https://hr.tencent.com/' def parse(self, response): tr_list = response.xpath('//table[@class="tablelist"]/tr') for tr in tr_list[1:-1]: item = TenXunItem() item['position_name']=tr.xpath('./td[1]/a/text()').extract()[0] item['position_link']=self.burl+tr.xpath('./td[1]/a/@href').extract()[0] item['position_type']=tr.xpath('./td[2]/text()').extract()[0] item['position_num']=tr.xpath('./td[3]/text()').extract()[0] item['position_addr']=tr.xpath('./td[4]/text()').extract()[0] item['position_time']=tr.xpath('./td[5]/text()').extract()[0] # yield item # 匹配下一页 next_url =self.burl + response.xpath('//div[@class="pagenav"]/a[11]/@href').extract()[0] yield scrapy.Request(url=next_url, callback=self.parse) # 要获取内容,则要发起个新的请求, 回调函数 回调时传参 yield scrapy.Request(url = item['position_link'],callback=self.detail_tent,meta={'items': item}) def detail_tent(self,response): # 得到上面传过来的参数 item = response.meta.get('items') item['position_con'] = ''.join(response.xpath('//ul[@class="squareli"]//text()').extract()) yield item # # 名字 # position_name_list = response.xpath('//td[@class="l square"]/a/text()').extract() # # 链接 # position_link_list = response.xpath('//td[@class="l square"]/a/@href').extract() # # 类型 # position_type_list = response.xpath('//table[@class="tablelist"]/tr/td[2]/text()').extract() # # 人数 # position_num_list = response.xpath('//table[@class="tablelist"]/tr/td[3]/text()').extract() # print('====================') # print('====================') # print(self.burl + tr_list[2].xpath('./td[1]/a/@href').extract()[0]) # print('====================') # print('====================')
pipelines.py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import json class TenXunPipeline(object): def open_spider(self,spider): self.f = open('tenxun.json', 'w', encoding='utf8') def process_item(self, item, spider): conn = json.dumps(dict(item), ensure_ascii=False)+' ' self.f.write(conn) return item def close_spider(self,spider): self.f.close()
items.py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class TenXunItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() # 名字 print('00000000000000001111111111111111') position_name = scrapy.Field() # 链接 position_link = scrapy.Field() # 类型 position_type = scrapy.Field() # 人数 position_num = scrapy.Field() # 地点 position_addr = scrapy.Field() # 发布时间 position_time = scrapy.Field() # 要求 position_con = scrapy.Field()
存入数据库: