zoukankan      html  css  js  c++  java
  • GAN生成对抗网络-CGAN原理与基本实现-条件生成对抗网络04

    CGAN - 条件GAN

    原始GAN的缺点

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    代码实现

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers
    import matplotlib.pyplot as plt
    %matplotlib inline
    import numpy as np
    import glob
    
    gpu = tf.config.experimental.list_physical_devices(device_type='GPU')
    tf.config.experimental.set_memory_growth(gpu[0], True)
    
    import tensorflow.keras.datasets.mnist as mnist
    
    (train_image, train_label), (_, _) = mnist.load_data()
    

    在这里插入图片描述
    在这里插入图片描述

    train_image = train_image / 127.5  - 1
    
    train_image = np.expand_dims(train_image, -1)
    
    train_image.shape
    

    在这里插入图片描述

    dataset = tf.data.Dataset.from_tensor_slices((train_image, train_label))
    
    AUTOTUNE = tf.data.experimental.AUTOTUNE
    

    在这里插入图片描述

    BATCH_SIZE = 256
    image_count = train_image.shape[0]
    noise_dim = 50
    
    dataset = dataset.shuffle(image_count).batch(BATCH_SIZE)
    
    def generator_model():
        seed = layers.Input(shape=((noise_dim,))) # 输入 形状长度为50的向量
        label = layers.Input(shape=(()))# 形状为空
            # 输入维度: 因0-9一共10个字符所以长度为10  映射成长度为50 输入序列的长度为1    
        x = layers.Embedding(10, 50, input_length=1)(label)#嵌入层将正整数(下标)转换为具有固定大小的向量
        x = layers.Flatten()(x)
        x = layers.concatenate([seed, x])# 与输入的seed合并
        x = layers.Dense(3*3*128, use_bias=False)(x)# 使用dense层转换成形状3*3通道128 的向量 不使用偏值
        x = layers.Reshape((3, 3, 128))(x) # reshape成3*3*128 
        x = layers.BatchNormalization()(x)# 批标准化
        x = layers.ReLU()(x) # 使用relu激活x 
        
        x = layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), use_bias=False)(x)# 反卷积64个卷积核 卷积核大小(3*3) 跨度2
        x = layers.BatchNormalization()(x)# 批标准化
        x = layers.ReLU()(x)  #使用relu激活x   #  7*7
    # 反卷积64个卷积核 卷积核大小(3*3) 跨度2  填充方式same 不适用偏值
        x = layers.Conv2DTranspose(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.ReLU()(x)    #   14*14
    
        x = layers.Conv2DTranspose(1, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.Activation('tanh')(x)
        
        model = tf.keras.Model(inputs=[seed,label], outputs=x)  
    # 创建模型    
        return model
    
    def discriminator_model():
        image = tf.keras.Input(shape=((28,28,1)))
        label = tf.keras.Input(shape=(()))
        
        x = layers.Embedding(10, 28*28, input_length=1)(label)
        x = layers.Reshape((28, 28, 1))(x)
        x = layers.concatenate([image, x])
        
        x = layers.Conv2D(32, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*2, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Conv2D(32*4, (3, 3), strides=(2, 2), padding='same', use_bias=False)(x)
        x = layers.BatchNormalization()(x)
        x = layers.LeakyReLU()(x)
        x = layers.Dropout(0.5)(x)
        
        x = layers.Flatten()(x)
        x1 = layers.Dense(1)(x)
        
        model = tf.keras.Model(inputs=[image, label], outputs=x1)
        return model
    
    generator = generator_model()
    
    discriminator = discriminator_model()
    
    binary_cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
    category_cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    
    def discriminator_loss(real_output, fake_output):
        real_loss = binary_cross_entropy(tf.ones_like(real_output), real_output)
        fake_loss = binary_cross_entropy(tf.zeros_like(fake_output), fake_output)
        total_loss = real_loss + fake_loss
        return total_loss
    
    def generator_loss(fake_output):
        fake_loss = binary_cross_entropy(tf.ones_like(fake_output), fake_output)
        return fake_loss
    
    generator_optimizer = tf.keras.optimizers.Adam(1e-5)
    discriminator_optimizer = tf.keras.optimizers.Adam(1e-5)
    
    @tf.function
    def train_step(images, labels):
        batchsize = labels.shape[0]
        noise = tf.random.normal([batchsize, noise_dim])
        
        with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
            generated_images = generator((noise, labels), training=True)
    
            real_output = discriminator((images, labels), training=True)
            fake_output = discriminator((generated_images, labels), training=True)
            
            gen_loss = generator_loss(fake_output)
            disc_loss = discriminator_loss(real_output, fake_output)
    
        gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
        gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
    
        generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
        discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
    
    noise_dim = 50
    num = 10
    noise_seed = tf.random.normal([num, noise_dim])
    cat_seed = np.random.randint(0, 10, size=(num, 1))
    print(cat_seed.T)
    

    在这里插入图片描述

    def generate_images(model, test_noise_input, test_cat_input, epoch):
        print('Epoch:', epoch+1)
      # Notice `training` is set to False.
      # This is so all layers run in inference mode (batchnorm).
        predictions = model((test_noise_input, test_cat_input), training=False)
        predictions = tf.squeeze(predictions)
        fig = plt.figure(figsize=(10, 1))
    
        for i in range(predictions.shape[0]):
            plt.subplot(1, 10, i+1)
            plt.imshow((predictions[i, :, :] + 1)/2)
            plt.axis('off')
    
    #    plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
        plt.show()
    
    def train(dataset, epochs):
        for epoch in range(epochs):
            for image_batch, label_batch in dataset:
                train_step(image_batch, label_batch)
            if epoch%10 == 0:
                generate_images(generator, noise_seed, cat_seed, epoch)
        generate_images(generator, noise_seed, cat_seed, epoch)
    
    EPOCHS = 200
    
    train(dataset, EPOCHS)
    

    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述
    在这里插入图片描述

  • 相关阅读:
    jQuery对DOM节点进行操作(插入节点之在元素内部插入)
    jQuery对DOM节点进行操作(创建节点)
    jQuery对元素值操作
    jQuery对元素内容操作-->对HTML内容的操作
    jQuery对元素内容操作-->对文本内容的操作
    jQuery对元素内容操作
    jQuery选择器-->注意事项
    jQuery选择器-->表单选择器
    cp 快捷命令:复制文件到多个目录
    Python-字符串
  • 原文地址:https://www.cnblogs.com/gemoumou/p/14186250.html
Copyright © 2011-2022 走看看