zoukankan      html  css  js  c++  java
  • 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-线性回归tf.keras概述-02

    线性回归原理

    在这里插入图片描述
    线性方程 y=kx+b
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    在这里插入图片描述

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告
    import tensorflow as tf
    import pandas as pd
    import matplotlib.pyplot as plt
    
    data = pd.read_csv('A.csv')
    print(data)
    plt.scatter(data.Education,data.Income)
    plt.show()
    

    在这里插入图片描述

    在这里插入图片描述

    预测目标与损失函数

    目标:预测函数f(x)与真实值之间的整体误差最小。
    损失函数:使用均方误差作为成本函数,也就是预测值和真实值之间差的平方取均值。
    在这里插入图片描述
    在这里插入图片描述

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告
    import tensorflow as tf
    import pandas as pd
    import matplotlib.pyplot as plt
    
    data = pd.read_csv('A.csv')
    # print(data)
    # plt.scatter(data.Education,data.Income)
    # plt.show()
    x = data.Education
    y = data.Income
    
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
    model.summary()
    
    

    在这里插入图片描述

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告
    import tensorflow as tf
    import pandas as pd
    import matplotlib.pyplot as plt
    
    data = pd.read_csv('A.csv')
    # print(data)
    # plt.scatter(data.Education,data.Income)
    # plt.show()
    x = data.Education
    y = data.Income
    
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
    # model.summary() # ax+b
    model.compile(optimizer='adam',loss='mse')# 编译(优化方法:admaoptimizer='adam',损失函数:均方差loss='mse')
    history = model.fit(x,y,epochs=5000) # 训练x,y5000次寻找a和b的最小值
    print(history)
    
    
    

    在这里插入图片描述

    import os
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告
    import tensorflow as tf
    import pandas as pd
    import matplotlib.pyplot as plt
    
    data = pd.read_csv('A.csv')
    # print(data)
    # plt.scatter(data.Education,data.Income)
    # plt.show()
    x = data.Education
    y = data.Income
    
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(1,input_shape=(1,)))
    # model.summary() # ax+b
    model.compile(optimizer='adam',loss='mse')# 编译(优化方法:admaoptimizer='adam',损失函数:均方差loss='mse')
    history = model.fit(x,y,epochs=5000) # 训练x,y5000次寻找a和b的最小值
    print(history)
    print(model.predict(x))  # 预测现有的x值收入
    print("20年的预测收入为:",model.predict(pd.Series([20]))) # 预测20年的收入
    
    
    

    在这里插入图片描述

  • 相关阅读:
    Codeforces 1316B String Modification
    Codeforces 1305C Kuroni and Impossible Calculation
    Codeforces 1305B Kuroni and Simple Strings
    Codeforces 1321D Navigation System
    Codeforces 1321C Remove Adjacent
    Codeforces 1321B Journey Planning
    Operating systems Chapter 6
    Operating systems Chapter 5
    Abandoned country HDU
    Computer HDU
  • 原文地址:https://www.cnblogs.com/gemoumou/p/14186280.html
Copyright © 2011-2022 走看看