zoukankan      html  css  js  c++  java
  • Date19

    相似度量的研究及其在数据挖掘中的应用(知网)

    常见的相似度量方法:Minkowski距离、Euclidean距离(处理数值型数据)、Mahalanobis距离、
    Manhattan距离和Cosine Angle距离
    本文从数据空间覆盖关系的角度提出一种相似度量方法,并在此基础上设计和实现了相应的俩中算法
    :(1)基于数据空间覆盖关系的分类算法(PCC);(2)基于动态部分覆盖的特征选择算法(DPC)

    结合邻近集计算法思想提出一种基于时间权重邻近集计算的算法(TWNCM);采用有序数匹配的思想,
    提出了基于结构相似度量的WEB页面聚类方法,并用于WEB信息抽取中。
    相似度的定义:相似度是两类模式之间的相似程度,它有多种搞得定义方式。在数据挖掘研究中,常
    用距离和相关系数来衡量对象之间的相似度,距离和相似系数统称为归类指数。
    数据类型:Nominal类型、Ordinal类型、Interval类型、Ratio类型
    数值型数据之间的距离:
    (1)曼哈度(Manhattan)距离
    (2)明考夫斯基(Minkowski)距离
    (3)欧氏(Euclidean)距离
    (4)马氏(Mahalanobis)距离
    (5)兰式(Lance Williams)距离
    (6)切比雪夫(Chebyshev)距离
    (7)相关系数
    离散型变量的距离:
    混合型变量间的距离:
    新的距离度量:
    HEOM度量(混合欧几里得重叠度量Heterogeneous Euclidean-Overlap Metric)
    值差度量(VDM)Value Difference Metric
    混合值差度量(HVDM)Heterogeneous Value Difference Metric
    插值值差度量(IVDM)Interpolated Value Difference Metric
    最低风向度量(MRM)Minimal Risk Metric
    时间效率、鲁棒性、精确性

    你只管努力,其他的交给天意~
  • 相关阅读:
    java工程中如何连接redis数据库?
    linux启动达梦数据库
    Maven项目无法编译resources文件夹下资源
    java 后端定义的大写字段传到前端后变成小写
    springboot同时接收表单数据和文件
    java:Fastjson将object转为json时"$ref"的相关问题
    consul注册中心搭建
    maven-compiler-plugin 插件详解
    org.activiti.api.runtime.shared.UnprocessableEntityException
    https配置
  • 原文地址:https://www.cnblogs.com/genghenggao/p/9121433.html
Copyright © 2011-2022 走看看