前言
模型转换思路通常为:
- Pytorch -> ONNX -> TensorRT
- Pytorch -> ONNX -> TVM
- Pytorch -> 转换工具 -> caffe
- Pytorch -> torchscript(C++版本Torch)
我的模型是使用Pytorch1.0训练的,第三种方法应该是还不支持,没有对应层名字, 放弃. (以下是用方法3生成的网络结构图, 其中部分层名字和工具对应不上).
因此本文使用第4中方法,详细步骤分两步, 具体如下(目前资料少,坑很多)
1. pytorch模型转化为libtorch的torchscript模型 (.pth -> .pt)
首先, 在python中, 把模型转化成.pt文件
Pytorch官方提供的C++API名为libtorch,详细查看:
- LIBRARY API
- USING THE PYTORCH C++ FRONTEND
import torch
# An instance of your model.
from my_infer import BaseLine
model = BaseLine().model.cpu().eval()
# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 256 , 128)
# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("demo/model.pt")
2. 使用libtorch调用torchscript模型
此处有一个大坑, opencv和torch可以单独使用, 但如果链接libtorch库以后, cv::imread提示未定义的应用. 所以使用了opencv2的图片读取方式, 然后再转成cv::Mat.
更新时间:2019/05/24
在更换libtorch版本后, cv:imread不再报错, 具体原因说不上来, 应该是之前的版本链接库时候出现矛盾什么的...
#include <iostream>
#include "torch/script.h"
#include "torch/torch.h"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <vector>
int main()
{
//加载pytorch模型
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("/home/zhuoshi/ZSZT/Geoffrey/opencvTest/m
assert(module != nullptr);
// 创建一个Tensor
//std::vector<torch::jit::IValue> inputs;
//inputs.emplace_back(torch::ones({1, 3, 256, 128}));
//测试前向
//at::Tensor output = module->forward(inputs).toTensor();
//std::cout << output;
// 转换为int8类型
//vector<int16_t> feature(2048);
//for (int i = 0;i<128;i++)
//{
// 转化成Float
//int temp = output[0][i].item().toInt();
// if (temp != 0){
// temp = 1;
// }
// feature[i] = temp;
//}
//std::cout << feature;
//读取图片
IplImage* pmg = cvLoadImage("/home/zhuoshi/ZSZT/Geoffrey/opencvTest/test.jpg");
cv::Mat image(pmg, true);
//cv::Mat imageRGB = cv::cvtColor(image, imageRGB, cv::COLOR_BGR2RGB);
cv::cvtColor(image, image, CV_BGR2RGB);
//IplImage转换成Tensor
cv::Mat img_float;
image.convertTo(img_float, CV_32F, 1.0 / 255);
cv::resize(img_float, img_float, cv::Size(256, 128));
torch::Tensor tensor_image = torch::from_blob(img_float.data, {1, 3, 256, 128}, torch::kFloat32);
//前向
std::vector<torch::jit::IValue> input;
input.emplace_back(tensor_image);
at::Tensor output_image = module->forward(input).toTensor();
//std::cout << output_image;
//Tensor 转 array
std::vector<float> feature(2048);
for (int i=0; i<2048; i++){
// feature[i] = output_image[i]
std::cout << output_image[0][i].item().toFloat();
}
return 0;
}
对应的CMakeLists.txt内容:
cmake_minimum_required(VERSION 2.8)
project(opencv_example_project)
SET(CMAKE_C_COMPILER g++)
add_definitions(--std=c++11)
# 指定libTorch位置
set(Torch_DIR /home/zhuoshi/ZSZT/Geoffrey/opencvTest/libtorch/share/cmake/Torch)
find_package(Torch REQUIRED)
find_package(OpenCV REQUIRED)
message(STATUS "OpenCV library status:")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
message(STATUS " torch lib : ${TORCH_LIBRARIES} ")
include_directories(${OpenCV_INCLUDE_DIRS}
/home/zhuoshi/ZSZT/Geoffrey/opencvTest/libtorch/include
/home/zhuoshi/ZSZT/Geoffrey/opencvTest/libtorch/include/torch/csrc/api/include/
)
add_executable(main main.cpp)
# Link your application with OpenCV libraries
target_link_libraries(main ${OpenCV_LIBS} ${TORCH_LIBRARIES} )
运行结果如图:
更新时间: 2019/05/25, 更换libtorch版本后, cv::read可用, 这是新版本
#include <iostream>
#include "torch/script.h"
#include "torch/torch.h"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include <vector>
int main()
{
/* 配置参数 */
std::vector <float> mean_ = {0.485, 0.456, 0.406};
std::vector <float> std_ = {0.229, 0.224, 0.225};
char path[] = "../test.jpg";
// 读取图片
cv::Mat image = cv::imread(path);
if (image.empty())
fprintf(stderr, "Can not load image
");
// 转换通道,
cv::cvtColor(image, image, CV_BGR2RGB);
cv::Mat img_float;
image.convertTo(img_float, CV_32F, 1.0 / 255);
// resize, 测试一个点数据
cv::resize(img_float, img_float, cv::Size(256, 128));
//std::cout << img_float.at<cv::Vec3f>(256, 128)[1] << std::endl;
// 转换成tensor
auto img_tensor = torch::from_blob(img_float.data, {1, 3, 256, 128}, torch::kFloat32);
//img_tensor = img_tensor.permute({0,3,1,2});
// tensor标准化
for (int i = 0; i < 3; i++) {
img_tensor[0][0] = img_tensor[0][0].sub_(mean_[i]).div_(std_[i]);
}
// 构造input
//auto img_var = torch::autograd::make_variable(img_tensor, false); //tensor->variable会报错
std::vector<torch::jit::IValue> inputs;
inputs.emplace_back(img_tensor); //向容器中加入新的元素, 右值引用
//加载pytorch模型
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("../model/model_int.pt");
assert(module != nullptr);
//前向
at::Tensor output_image = module->forward(inputs).toTensor();
std::cout << output_image;
return 0;
}
cv::Mat convertTo3Channels(cv::Mat binImg)
{
cv::Mat three_channel = cv::Mat::zeros(binImg.rows, binImg.cols, CV_8UC3);
std::vector<cv::Mat> channels;
for (int i=0;i<3;i++)
{
channels.push_back(binImg);
}
merge(channels, three_channel);
return three_channel;
}
对应CMakelist.txt文件:
cmake_minimum_required(VERSION 2.8)
# Define project name
project(opencv_example_project)
SET(CMAKE_C_COMPILER g++)
add_definitions(--std=c++11)
# 指定libTorch位置
set(Torch_DIR /home/geoffrey/CLionProjects/opencvTest/libtorch/share/cmake/Torch)
find_package(Torch REQUIRED)
message(STATUS "Torch library status:")
message(STATUS " version: ${TORCH_VERSION}")
message(STATUS " libraries: ${TORCH_LIBS}")
message(STATUS " include path: ${TORCH_INCLUDE_DIRS}")
message(STATUS " torch lib : ${TORCH_LIBRARIES} ")
# 指定OpenCV位置
#set(OpenCV_DIR /run/media/geoffrey/Timbersaw/Backup/other_package/opencv-4.0.0/build)
# set(OpenCV_DIR /opt/opencv2)
find_package(OpenCV REQUIRED)
message(STATUS "OpenCV library status:")
message(STATUS " version: ${OpenCV_VERSION}")
message(STATUS " libraries: ${OpenCV_LIBS}")
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
message(STATUS " opencv lib : ${OpenCV_LIBRARIES} ")
# 包含头文件include
include_directories(${OpenCV_INCLUDE_DIRS} ${TORCH_INCLUDE_DIRS})
# 生成的目标文件(可执行文件)
add_executable(main main.cpp)
# 置需要的库文件lib
# set(OpenCV_LIBS opencv_core opencv_highgui opencv_imgcodecs opencv_imgproc)
target_link_libraries(main ${OpenCV_LIBS} ${TORCH_LIBRARIES}) #