zoukankan      html  css  js  c++  java
  • Caesar's Legions(三维dp)

    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    Gaius Julius Caesar, a famous general, loved to line up his soldiers. Overall the army had n1 footmen and n2 horsemen. Caesar thought that an arrangement is not beautiful if somewhere in the line there are strictly more that k1 footmen standing successively one after another, or there are strictly more than k2 horsemen standing successively one after another. Find the number of beautiful arrangements of the soldiers.

    Note that all n1 + n2 warriors should be present at each arrangement. All footmen are considered indistinguishable among themselves. Similarly, all horsemen are considered indistinguishable among themselves.

    Input

    The only line contains four space-separated integers n1n2k1k2 (1 ≤ n1, n2 ≤ 100, 1 ≤ k1, k2 ≤ 10) which represent how many footmen and horsemen there are and the largest acceptable number of footmen and horsemen standing in succession, correspondingly.

    Output

    Print the number of beautiful arrangements of the army modulo 100000000(108). That is, print the number of such ways to line up the soldiers, that no more than k1 footmen stand successively, and no more than k2 horsemen stand successively.

    Sample Input

    Input
    2 1 1 10
    Output
    1
    Input
    2 3 1 2
    Output
    5
    Input
    2 4 1 1
    Output
    0

    Hint

    Let's mark a footman as 1, and a horseman as 2.

    In the first sample the only beautiful line-up is: 121

    In the second sample 5 beautiful line-ups exist: 12122, 12212, 21212, 21221, 22121

     

    The problem is solved lazy dynamics. Let z[n1] [n2] [2] - a number of ways to place troops in a legion of Caesar. Indicate the following parameters, n1 – is a number of footmen, n2 – is a number of horseman, the third parameter indicates what troops put Caesar in the beginning of the line. If Caesar wants to put the footmen, the state dynamics of the z [n1] [n2] [0] go to the state

    z [n1 - i] [n2] [0], where 0 <= i <= min (k1, n1) . If Caesar wants to put the riders, the state dynamics of the z [n1] [n2] [1] go to the state z [n1] [n2 - i] [1], where 0 <= I <= min (k2, n2) .

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 using namespace std;
     5 const int mod = 100000000 ;
     6 int n1 , n2 , k1 , k2 ;
     7 int a[110][110][2] ;
     8 
     9 int Caesar (int n1 , int n2 , int f)
    10 {
    11     if (a[n1][n2][f] != -1 ) {
    12         return a[n1][n2][f] ;
    13     }
    14     if (n1 + n2 == 0) {
    15         a[n1][n2][f] = 1 % mod ;
    16         return a[n1][n2][f] ;
    17     }
    18     a[n1][n2][f] = 0 ;
    19     int i ;
    20     if (f == 0) {
    21         for (i = 1 ; i <= min (k1 , n1 ) ; i++) {
    22             a[n1][n2][f] += Caesar (n1 - i , n2 , 1 - f) ;
    23             a[n1][n2][f] %= mod ;
    24         }
    25     }
    26     else {
    27         for (i = 1 ; i <= min (k2 , n2 ) ; i++) {
    28             a[n1][n2][f] += Caesar (n1 , n2 - i , 1 - f ) ;
    29             a[n1][n2][f] %= mod ;
    30         }
    31     }
    32     return a[n1][n2][f] ;
    33 }
    34 
    35 void solve ()
    36 {
    37     memset (a , 0xFF , sizeof(a) ) ;
    38     printf ("%d
    " , ( Caesar (n1 , n2 , 0 ) + Caesar (n1 , n2 , 1 ) ) % mod ) ;
    39 }
    40 
    41 int main ()
    42 {
    43 #ifdef online_jude
    44     freopen ("a.txt" , "r" , stdin ) ;
    45 #endif // online_jude
    46     scanf ("%d%d%d%d" , &n1 , &n2 , &k1 , &k2 ) ;
    47     solve () ;
    48     return 0 ;
    49 }
    View Code
  • 相关阅读:
    docker安装kafka
    Prometheus警报
    MongoDB介绍
    SpringMvc中几个注解
    无DNS安装VCSA
    互联网本质
    什么是领导力
    58沈剑_一分钟专栏
    以数据库思维理解区块链
    区块链的4个实际应用
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4307553.html
Copyright © 2011-2022 走看看