zoukankan      html  css  js  c++  java
  • hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))

    Remainder

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3036    Accepted Submission(s): 679

    Problem Description
    Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem. 
    You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.
     
    Input
    There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.
    The input is terminated with three 0s. This test case is not to be processed.
     
    Output
    For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)
     
    Sample Input
    2 2 2 -1 12 10 0 0 0
     
    Sample Output
    0 2 *+
     
     1 #include<stdio.h>
     2 #include<queue>
     3 #include<string.h>
     4 #include<algorithm>
     5 #include<math.h>
     6 int n , k , m , ini , km ;
     7 int en ;
     8 bool vis[1000010] ;
     9 struct node
    10 {
    11     int  w ;
    12     int dir , nxt , step ;
    13 }e[1000001];
    14 int l , r ;
    15 /*
    16 bool cmp (const node &a , const node &b)
    17 {
    18     if (a.step < b.step ) return true ;
    19     if (a.step == b.step ) return a.dir < b.dir ;
    20     return false ;
    21 }*/
    22 
    23 int calc (int u , int id)
    24 {
    25     if (id == 0) return (u + m)  % km;
    26     else if (id == 1) return (u - m) % km ;
    27     else if (id == 2) return (u * m) % km ;
    28     else return  (u % m + m) % m % km;
    29 }
    30 
    31 bool bfs ()
    32 {
    33   //  printf ("ini=%d
    " , ini ) ;
    34     node tmp , ans ;
    35     l = 0 , r = 1 ;
    36     vis[ (n % k + k) % k] = 1 ;
    37     e[l].w = n , e[l].dir = -1 , e[l].nxt = -1 , e[l].step = 0 ;
    38     while ( l != r) {
    39       //  std::sort (e + l , e + r , cmp ) ;
    40         ans = e[l] ;
    41        // printf ("S---%d = %d
    " , ans.w , ans.step ) ;
    42         for (int i = 0 ; i < 4 ; i ++) {
    43             tmp = ans ;
    44             tmp.w = calc (tmp.w , i) ;
    45             if (vis[(tmp.w % k + k) % k]) continue ; vis[ (tmp.w % k + k) % k] = 1 ;
    46             tmp.dir = i ; tmp.nxt = l ; tmp.step ++ ;
    47             e[r ++] = tmp ;
    48             if ( ((tmp.w % k + k) % k ) == ini) {
    49             //    printf ("final : %d
    " , tmp.step ) ;
    50             //    printf ("answer:%d
    " , tmp.w ) ;
    51                 return true ;
    52             }
    53           //  printf ("%d = %d
    " , tmp.w , tmp.step ) ;
    54         }
    55         l ++ ;
    56     }
    57     return false ;
    58 }
    59 
    60 void dfs (int id , int deep)
    61 {
    62     if (e[id].nxt == -1) {
    63         printf ("%d
    " , deep ) ;
    64         return ;
    65     }
    66   //  printf ("ID=%d , %d 
    " , id , e[id].dir ) ;
    67     dfs (e[id].nxt , deep + 1) ;
    68     int t = e[id].dir ;
    69    // printf ("t=%d
    " , t ) ;
    70     if (t == 0) printf ("+") ;
    71     else if (t == 1) printf ("-") ;
    72     else if (t == 2) printf ("*") ;
    73     else if (t == 3) printf ("%%") ;
    74 }
    75 
    76 int main ()
    77 {
    78    // freopen ("a.txt" , "r" , stdin ) ;
    79     while (~ scanf ("%d%d%d" , &n , &k , &m )) {
    80         if (n == 0 && k == 0 && m == 0) break ;
    81         memset (vis , 0 , sizeof(vis)) ;
    82         ini = ((n+1)%k + k) % k ;
    83      /*   if (bfs () ) {puts ("yes") ; printf ("l=%d
    " , l ) ; }
    84         else puts ("no") ;*/
    85         km = k * m ;
    86         if (bfs ()) dfs (r - 1, 0) ;
    87         else printf ("0") ;
    88         puts ("") ; //puts ("") ;
    89     }
    90     return 0 ;
    91 }
    View Code

    wa到死。
    一个个坑等你跳,比如说printf ("%%") ;

    % (k * m) ;

    mod : a mod b = (a % b + b) % b ;

    http://www.cnblogs.com/qiufeihai/archive/2012/08/28/2660272.html

  • 相关阅读:
    回答自己之前的提问!
    阅读《构建之法》第13-17章
    阅读《构建之发》10-12章
    阅读《构建之法 》8,9,10章
    Practise 5.2测试与封装(黑白盒
    Practice5.1 测试与封装5.1
    Practice4 阅读《构建之法》6-7章
    Practice3 阅读《构建之法》1-5章
    “做汉堡”之评价我的队友
    Practice2 结对子之“小学四则运算”
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4479860.html
Copyright © 2011-2022 走看看