SRM 510 2 250TheAlmostLuckyNumbersDivTwo
Problem Statement
John and Brus believe that the digits 4 and 7 are lucky and all others are not. According to them, an almost lucky number is a number that contains at most one non-lucky digit in its decimal representation. Return the total number of almost lucky numbers between a and b, inclusive.
Definition
- ClassTheAlmostLuckyNumbersDivTwo
- Methodfind
- Parametersint , int
- Returnsint
- Method signatureint find(int a, int b)
(be sure your method is public)
Limits
- Time limit (s)2.000
- Memory limit (MB)64
Constraints
- a will be between 1 and 1,000,000, inclusive.
- b will be between a and 1,000,000, inclusive.
Test cases
-
- a4
- b7
All numbers between 4 and 7 are almost lucky. -
- a8
- b19
Numbers 8, 9, 14 and 17 are almost lucky. -
- a28
- b33
No almost lucky numbers here. -
- a1234
- b4321
This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <ctime> 5 #include <iostream> 6 #include <algorithm> 7 #include <set> 8 #include <vector> 9 #include <sstream> 10 #include <typeinfo> 11 #include <fstream> 12 13 using namespace std; 14 int dp[10][10] , dp2[10][10]; 15 int dig[10] ; 16 int vis[10] ; 17 18 void init () 19 { 20 memset (dp , 0 , sizeof(dp)) ; 21 memset (dp2 , 0 , sizeof(dp2) ) ; 22 for (int i = 0 ; i < 10 ; i ++) dp[1][i] = 1 ; 23 for (int i = 2 ; i <= 7 ; i ++ ) { 24 for (int j = 0 ; j < 10 ; j ++) { 25 dp[i][j] += dp[i-1][4] + dp[i-1][7] ; 26 } 27 } 28 int a , b , c = 0 , d = 0 ; 29 for (int i = 1 ; i <= 7 ; i ++) for (int j = 0 ; j < 10 ; j ++) dp2[i][j] = dp[i][j] ; 30 for (int i = 2 ; i <= 7 ; i ++) { 31 a = dp[i][4] , b = dp[i][7] ; 32 for (int j = 0 ; j < 10 ; j ++) { 33 if (!(j == 4 || j == 7)) { 34 dp2[i][4] += dp[i-1][j] ; 35 dp2[i][7] += dp[i-1][j] ; 36 } 37 else if (j == 4) { 38 dp2[i][4] += c ; 39 dp2[i][7] += c ; 40 } 41 else if (j == 7) { 42 dp2[i][4] += d ; 43 dp2[i][7] += d ; 44 } 45 } 46 // printf ("dp[%d][4]=%d , dp[%d][7]=%d " , i , dp[i][4] , i , dp[i][7]) ; 47 c = dp2[i][4] - a , d = dp2[i][7] - b ; 48 } 49 } 50 51 int cal (int x) 52 { 53 memset (dig , 0 , sizeof(dig)) ; 54 memset (vis , 0 , sizeof(vis)) ; 55 int ans = 0 ; 56 int len = 1 ; 57 int tmp = x ; 58 int cnt = 0 ; 59 while (x) { 60 dig[len ++] = x % 10 ; 61 x /= 10 ; 62 } 63 for (int i = len - 1 ; i >= 1 ; i --) { 64 vis[i] = cnt ; 65 if (dig[i] != 4 && dig[i] != 7) cnt ++ ; 66 } 67 //for (int i = 0 ; i < dig[1] ; i ++) ans += dp[1][i] ; 68 // ans += 10 ; 69 // printf ("hahaha") ; 70 // printf ("%d " , vis[0]) ; 71 // for (int i = 1 ; i < len ; i ++) printf ("%d " , vis[i]) ; puts ("") ; 72 for (int i = 1 ; i < len ; i ++) { 73 printf ("vis[%d]=%d: " , i , vis[i] ) ; 74 if (vis[i] == 0 ) { 75 for (int j = 0 ; j < dig[i] ; j ++) ans += dp2[i][j] ; 76 } 77 else if (vis[i] == 1) { 78 for (int j = 0 ; j < dig[i] ; j ++) if (j == 4 || j == 7) ans += dp[i][j] , printf ("dp[%d][%d]=%d " , i , j , dp[i][j]) ; 79 } 80 if (i == len -1 ) ans -= dp[i][0] ; 81 } 82 printf ("ans = %d " , ans ) ; 83 if (len == 2) { 84 ans += dp[1][0] ; 85 } 86 else { 87 ans += dp[1][0] ; 88 for (int i = 1 ; i < len - 1 ; i ++) { 89 for (int j = 1 ; j < 10 ; j ++) ans += dp2[i][j] ; 90 } 91 } 92 printf ("%d:ans = %d " , tmp , ans) ; 93 printf ("----------------------------------- ") ; 94 return ans ; 95 } 96 97 class TheAlmostLuckyNumbersDivTwo { 98 public: 99 int find(int a, int b) { 100 puts ("") ; 101 if (a > b) swap(a,b) ; 102 init () ; 103 printf ("%d ~ %d " , a , b) ; 104 // printf ("%d - %d " , cal(b) , cal(a-1)) ; 105 return cal(b+1) - cal(a) ; 106 //return 0 ; 107 } 108 }; 109 110 // CUT begin 111 ifstream data("TheAlmostLuckyNumbersDivTwo.sample"); 112 113 string next_line() { 114 string s; 115 getline(data, s); 116 return s; 117 } 118 119 template <typename T> void from_stream(T &t) { 120 stringstream ss(next_line()); 121 ss >> t; 122 } 123 124 void from_stream(string &s) { 125 s = next_line(); 126 } 127 128 template <typename T> 129 string to_string(T t) { 130 stringstream s; 131 s << t; 132 return s.str(); 133 } 134 135 string to_string(string t) { 136 return """ + t + """; 137 } 138 139 bool do_test(int a, int b, int __expected) { 140 time_t startClock = clock(); 141 TheAlmostLuckyNumbersDivTwo *instance = new TheAlmostLuckyNumbersDivTwo(); 142 int __result = instance->find(a, b); 143 double elapsed = (double)(clock() - startClock) / CLOCKS_PER_SEC; 144 delete instance; 145 146 if (__result == __expected) { 147 cout << "PASSED!" << " (" << elapsed << " seconds)" << endl; 148 return true; 149 } 150 else { 151 cout << "FAILED!" << " (" << elapsed << " seconds)" << endl; 152 cout << " Expected: " << to_string(__expected) << endl; 153 cout << " Received: " << to_string(__result) << endl; 154 return false; 155 } 156 } 157 158 int run_test(bool mainProcess, const set<int> &case_set, const string command) { 159 int cases = 0, passed = 0; 160 while (true) { 161 if (next_line().find("--") != 0) 162 break; 163 int a; 164 from_stream(a); 165 int b; 166 from_stream(b); 167 next_line(); 168 int __answer; 169 from_stream(__answer); 170 171 cases++; 172 if (case_set.size() > 0 && case_set.find(cases - 1) == case_set.end()) 173 continue; 174 175 cout << " Testcase #" << cases - 1 << " ... "; 176 if ( do_test(a, b, __answer)) { 177 passed++; 178 } 179 } 180 if (mainProcess) { 181 cout << endl << "Passed : " << passed << "/" << cases << " cases" << endl; 182 int T = time(NULL) - 1435285921; 183 double PT = T / 60.0, TT = 75.0; 184 cout << "Time : " << T / 60 << " minutes " << T % 60 << " secs" << endl; 185 cout << "Score : " << 250 * (0.3 + (0.7 * TT * TT) / (10.0 * PT * PT + TT * TT)) << " points" << endl; 186 } 187 return 0; 188 } 189 190 int main(int argc, char *argv[]) { 191 cout.setf(ios::fixed, ios::floatfield); 192 cout.precision(2); 193 set<int> cases; 194 bool mainProcess = true; 195 for (int i = 1; i < argc; ++i) { 196 if ( string(argv[i]) == "-") { 197 mainProcess = false; 198 } else { 199 cases.insert(atoi(argv[i])); 200 } 201 } 202 if (mainProcess) { 203 cout << "TheAlmostLuckyNumbersDivTwo (250 Points)" << endl << endl; 204 } 205 return run_test(mainProcess, cases, argv[0]); 206 } 207 // CUT end
数位dp,,,,蛮有趣的,写了我三天,还好现在是考试季。数位dp能大大减少复杂度,拿这道题来说。如果用暴力来做要O(1e6),但用数位dp来的话,只需O(70)!!!!!
但同时换来的是复杂的构造。
推荐:http://www.cnblogs.com/archimedes/p/numerical-digit-dp.html