zoukankan      html  css  js  c++  java
  • SRM 510 2 250TheAlmostLuckyNumbersDivTwo(数位dp)

    SRM 510 250TheAlmostLuckyNumbersDivTwo


    Problem Statement

    John and Brus believe that the digits 4 and 7 are lucky and all others are not. According to them, an almost lucky number is a number that contains at most one non-lucky digit in its decimal representation. Return the total number of almost lucky numbers between a and b, inclusive.

    Definition

    • ClassTheAlmostLuckyNumbersDivTwo
    • Methodfind
    • Parametersint , int
    • Returnsint
    • Method signatureint find(int a, int b)
    (be sure your method is public)

    Limits

    • Time limit (s)2.000
    • Memory limit (MB)64

    Constraints

    • a will be between 1 and 1,000,000, inclusive.
    • b will be between a and 1,000,000, inclusive.

    Test cases

    1.  
      • a4
      • b7
       
      Returns4
       
      All numbers between 4 and 7 are almost lucky.
    2.  
      • a8
      • b19
       
      Returns4
       
      Numbers 8, 9, 14 and 17 are almost lucky.
    3.  
      • a28
      • b33
       
      Returns0
       
      No almost lucky numbers here.
    4.  
      • a1234
      • b4321
       
      Returns36

    This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.

      1 #include <cstdio>
      2 #include <cmath>
      3 #include <cstring>
      4 #include <ctime>
      5 #include <iostream>
      6 #include <algorithm>
      7 #include <set>
      8 #include <vector>
      9 #include <sstream>
     10 #include <typeinfo>
     11 #include <fstream>
     12 
     13 using namespace std;
     14 int dp[10][10] , dp2[10][10];
     15 int dig[10] ;
     16 int vis[10] ;
     17 
     18 void init ()
     19 {
     20     memset (dp , 0 , sizeof(dp)) ;
     21     memset (dp2 , 0 , sizeof(dp2) ) ;
     22     for (int i = 0 ; i < 10 ; i ++) dp[1][i] = 1 ;
     23     for (int i = 2 ; i <= 7 ; i ++ ) {
     24         for (int j = 0 ; j < 10 ; j ++) {
     25           dp[i][j] += dp[i-1][4] + dp[i-1][7] ;
     26         }
     27     }
     28     int a , b , c = 0 , d = 0 ;
     29     for (int i = 1 ; i <= 7 ; i ++) for (int j = 0 ; j < 10 ; j ++) dp2[i][j] = dp[i][j] ;
     30     for (int i = 2 ; i <= 7 ; i ++) {
     31         a = dp[i][4] , b = dp[i][7] ;
     32         for (int j = 0 ; j < 10 ; j ++) {
     33             if (!(j == 4 || j == 7)) {
     34                 dp2[i][4] += dp[i-1][j] ;
     35                 dp2[i][7] += dp[i-1][j] ;
     36             }
     37             else if (j == 4) {
     38                 dp2[i][4] += c ;
     39                 dp2[i][7] += c ;
     40             }
     41             else if (j == 7) {
     42                 dp2[i][4] += d ;
     43                 dp2[i][7] += d ;
     44             }
     45         }
     46    //    printf ("dp[%d][4]=%d , dp[%d][7]=%d
    " , i , dp[i][4] , i , dp[i][7]) ;
     47         c = dp2[i][4] - a , d = dp2[i][7] - b ;
     48     }
     49 }
     50 
     51 int cal (int x)
     52 {
     53     memset (dig , 0 , sizeof(dig)) ;
     54     memset (vis , 0 , sizeof(vis)) ;
     55     int ans = 0 ;
     56     int len = 1 ;
     57     int tmp = x ;
     58     int cnt = 0 ;
     59     while (x) {
     60         dig[len ++] = x % 10 ;
     61         x /= 10 ;
     62     }
     63     for (int i = len - 1 ; i >= 1 ; i --) {
     64         vis[i] = cnt ;
     65         if (dig[i] != 4 && dig[i] != 7) cnt ++ ;
     66     }
     67     //for (int i = 0 ; i < dig[1] ; i ++) ans += dp[1][i] ;
     68  //   ans += 10 ;
     69   //  printf ("hahaha") ;
     70   //  printf ("%d " , vis[0]) ;
     71    // for (int i = 1 ; i < len ; i ++) printf ("%d " , vis[i]) ; puts ("") ;
     72     for (int i = 1 ; i < len  ; i ++) {
     73        printf ("vis[%d]=%d:
    
    " , i , vis[i] ) ;
     74         if (vis[i] == 0 ) {
     75             for (int j = 0 ; j < dig[i] ; j ++) ans += dp2[i][j] ;
     76         }
     77         else if (vis[i] == 1) {
     78             for (int j = 0 ; j < dig[i] ; j ++) if (j == 4 || j == 7) ans += dp[i][j]  , printf ("dp[%d][%d]=%d
    " , i , j , dp[i][j]) ;
     79         }
     80         if (i == len -1 ) ans -= dp[i][0] ;
     81     }
     82     printf ("ans = %d
    " , ans ) ;
     83     if (len == 2) {
     84         ans += dp[1][0] ;
     85     }
     86     else {
     87         ans += dp[1][0] ;
     88         for (int i = 1 ; i < len - 1 ; i ++) {
     89             for (int j = 1 ; j < 10 ; j ++) ans += dp2[i][j] ;
     90         }
     91     }
     92     printf ("%d:ans = %d
    " , tmp , ans) ;
     93     printf ("-----------------------------------
    ") ;
     94     return ans ;
     95 }
     96 
     97 class TheAlmostLuckyNumbersDivTwo {
     98     public:
     99     int find(int a, int b) {
    100         puts ("") ;
    101         if (a > b) swap(a,b) ;
    102         init () ;
    103         printf ("%d ~ %d
    " , a , b) ;
    104      //   printf ("%d - %d
    " , cal(b) , cal(a-1)) ;
    105         return cal(b+1) - cal(a) ;
    106         //return 0 ;
    107     }
    108 };
    109 
    110 // CUT begin
    111 ifstream data("TheAlmostLuckyNumbersDivTwo.sample");
    112 
    113 string next_line() {
    114     string s;
    115     getline(data, s);
    116     return s;
    117 }
    118 
    119 template <typename T> void from_stream(T &t) {
    120     stringstream ss(next_line());
    121     ss >> t;
    122 }
    123 
    124 void from_stream(string &s) {
    125     s = next_line();
    126 }
    127 
    128 template <typename T>
    129 string to_string(T t) {
    130     stringstream s;
    131     s << t;
    132     return s.str();
    133 }
    134 
    135 string to_string(string t) {
    136     return """ + t + """;
    137 }
    138 
    139 bool do_test(int a, int b, int __expected) {
    140     time_t startClock = clock();
    141     TheAlmostLuckyNumbersDivTwo *instance = new TheAlmostLuckyNumbersDivTwo();
    142     int __result = instance->find(a, b);
    143     double elapsed = (double)(clock() - startClock) / CLOCKS_PER_SEC;
    144     delete instance;
    145 
    146     if (__result == __expected) {
    147         cout << "PASSED!" << " (" << elapsed << " seconds)" << endl;
    148         return true;
    149     }
    150     else {
    151         cout << "FAILED!" << " (" << elapsed << " seconds)" << endl;
    152         cout << "           Expected: " << to_string(__expected) << endl;
    153         cout << "           Received: " << to_string(__result) << endl;
    154         return false;
    155     }
    156 }
    157 
    158 int run_test(bool mainProcess, const set<int> &case_set, const string command) {
    159     int cases = 0, passed = 0;
    160     while (true) {
    161         if (next_line().find("--") != 0)
    162             break;
    163         int a;
    164         from_stream(a);
    165         int b;
    166         from_stream(b);
    167         next_line();
    168         int __answer;
    169         from_stream(__answer);
    170 
    171         cases++;
    172         if (case_set.size() > 0 && case_set.find(cases - 1) == case_set.end())
    173             continue;
    174 
    175         cout << "  Testcase #" << cases - 1 << " ... ";
    176         if ( do_test(a, b, __answer)) {
    177             passed++;
    178         }
    179     }
    180     if (mainProcess) {
    181         cout << endl << "Passed : " << passed << "/" << cases << " cases" << endl;
    182         int T = time(NULL) - 1435285921;
    183         double PT = T / 60.0, TT = 75.0;
    184         cout << "Time   : " << T / 60 << " minutes " << T % 60 << " secs" << endl;
    185         cout << "Score  : " << 250 * (0.3 + (0.7 * TT * TT) / (10.0 * PT * PT + TT * TT)) << " points" << endl;
    186     }
    187     return 0;
    188 }
    189 
    190 int main(int argc, char *argv[]) {
    191     cout.setf(ios::fixed, ios::floatfield);
    192     cout.precision(2);
    193     set<int> cases;
    194     bool mainProcess = true;
    195     for (int i = 1; i < argc; ++i) {
    196         if ( string(argv[i]) == "-") {
    197             mainProcess = false;
    198         } else {
    199             cases.insert(atoi(argv[i]));
    200         }
    201     }
    202     if (mainProcess) {
    203         cout << "TheAlmostLuckyNumbersDivTwo (250 Points)" << endl << endl;
    204     }
    205     return run_test(mainProcess, cases, argv[0]);
    206 }
    207 // CUT end
    View Code

    数位dp,,,,蛮有趣的,写了我三天,还好现在是考试季。数位dp能大大减少复杂度,拿这道题来说。如果用暴力来做要O(1e6),但用数位dp来的话,只需O(70)!!!!!

    但同时换来的是复杂的构造。

    推荐:http://www.cnblogs.com/archimedes/p/numerical-digit-dp.html

  • 相关阅读:
    DFS
    离散化
    前缀和&差分
    数组运用_1-15 选择题
    数组运用_1-13 选择题
    数组运用_1-11 选择题
    数组运用_1-9 选择题
    数组运用_1-4 编程练习
    数组初始_2-22编程练习
    poj 3669 bfs(这道题隐藏着一个大坑)
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4608215.html
Copyright © 2011-2022 走看看