今天遇到有人问我哥问题,
a = 7.1 sum = a / 1000 print(sum)
输出:0.0070999999999999995
问:不应该是0.0071吗?怎么多了那么多小数位?我虽然知道这是正常情况,但含糊其辞说不清楚,上网差了下原因,以此记录。
其实这不是Python的问题,而是实数的无限精度跟计算机的有限内存之间的矛盾。
我们知道,将一个小数转化为二进制表示的方式是,不断的乘2,取其中的整数部分。例如:
(1) 0.625*2 = 1.25, 整数部分为1,小数部分为0.25
(2) 0.25 * 2 = 0.5 , 整数部分为0,小数部分为0.5
(3) 0.5 * 2 = 1 , 整数部分为1,小数部分为0
所以0.625的二进制表示就是0.101
然而有些小数,例如0.4,并不能够精确的转化为二进制表示,用上面的这种方法计算:
(1) 0.4*2=0.8 整数部分为0,小数部分为0.8
(2) 0.8*2=1.6 整数部分为1,小数部分为0.6
(3) 0.6*2=1.2 整数部分为1,小数部分为0.2
(4) 0.2*2=0.4 整数部分为0,小数部分为0.4
(5) 0.4*2=0.8 整数部分为0,小数部分为0.8
(6) 0.8*2=1.6 整数部分为1,小数部分为0.6
(7) 0.6*2=1.2 整数部分为1,小数部分为0.2
……
计算机的内存、cpu寄存器等等这些硬件单元都是有限的,只能表示有限位数的二进制位,因此存储的二进制小数就会和实际转换而成的二进制数有一定的误差。
一些解决的途径
Decimal
使用这个模块不会出现任何小误差。
>>> from decimal import Decimal >>> a = Decimal('4.2') >>> b = Decimal('2.1') >>> a + b Decimal('6.3') >>> print(a + b) 6.3 >>> (a + b) == Decimal('6.3') True
round()内置方法
>>> round(2.635, 2)
2.63
参考:
https://www.zhihu.com/question/25457573
https://www.jb51.net/article/127394.htm