zoukankan      html  css  js  c++  java
  • 【人脸识别——Dlib学习2】Face Landmark Detection

    1. 官网文档翻译

    http://dlib.net/face_landmark_detection.py.html

    1. 这个例子展示如何找到人的正脸,并且估计它的姿态。这个姿态由68个标点描述。人脸上会被标记很多点,例如嘴的边角,沿着眉毛,眼睛上等等。
    2. 我们使用的Face detector是使用经典的HOG特征,结合线性分类器、图像金字塔和滑动窗口检测的算法。姿态估计器的建立是基于下文:One Millisecond Face Alignment with an Ensemble of Regression Trees by Vahid Kazemi and Josephine Sullivan, 并且在iBUG 300-W face landmark dataset进行训练。
    # -*-coding:utf-8-*-
    #author: lyp time: 2018/9/10
    import sys
    import os
    import dlib
    import glob
    
    # 本例子要求你在cmd中输入两个参数
    # 参数一是68点文件的路径,传给predictor_path
    # 参数二是要检测的图片的路径,传给face_folder_path
    # Windows这个方式不太友好,一直提醒没有dlib模块。
    if len(sys.argv) != 3:
        print(
            "Give the path to the trained shape predictor model as the first "
            "argument and then the directory containing the facial images.
    "
            "For example, if you are in the python_examples folder then "
            "execute this program by running:
    "
            "    ./face_landmark_detection.py shape_predictor_68_face_landmarks.dat ../examples/faces
    "
            "You can download a trained facial shape predictor from:
    "
            "    http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2")
        exit()
    
    # 输入的路径传给对应参数
    predictor_path = sys.argv[1]
    faces_folder_path = sys.argv[2]
    
    
    detector = dlib.get_frontal_face_detector()  # 人脸检测器的生成
    predictor = dlib.shape_predictor(predictor_path)  # 特征点提取器的生成
    win = dlib.image_window()  # dlib提供的图片窗口
    
    # 获取指定文件路径下的所有.jpg文件,'*'是通配符
    for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
        print("Processing file: {}".format(f))
    
        img = dlib.load_rgb_image(f)
    
        win.clear_overlay()
        win.set_image(img)
    
        # Ask the detector to find the bounding boxes of each face. The 1 in the
        # second argument indicates that we should upsample the image 1 time. This
        # will make everything bigger and allow us to detect more faces.
    
        # 将图像进行向上采样一倍
        dets = detector(img, 1)
        print("Number of faces detected: {}".format(len(dets)))
    
        # 使用enumerate函数遍历dets中元素
        
        for k, d in enumerate(dets):
            print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
                k, d.left(), d.top(), d.right(), d.bottom()))
            
            # Get the landmarks/parts for the face in box d.
            shape = predictor(img, d)
            print("Part 0: {}, Part 1: {} ...".format(shape.part(0),
                                                      shape.part(1)))
            # Draw the face landmarks on the screen.
            win.add_overlay(shape)
    
        win.add_overlay(dets)
        dlib.hit_enter_to_continue()
  • 相关阅读:
    【CF1009F】Dominant Indices(长链剖分优化DP)
    长链剖分学习笔记
    【洛谷5294】[HNOI2019] 序列(主席树维护单调栈+二分)
    【洛谷5286】[HNOI2019] 鱼(计算几何)
    【洛谷5292】[HNOI2019] 校园旅行(思维DP)
    【UVA1309】Sudoku(DLX)
    初学DLX
    【LOJ2461】「2018 集训队互测 Day 1」完美的队列(分块+双指针)
    【LOJ6062】「2017 山东一轮集训 Day2」Pair(线段树套路题)
    【LOJ6060】「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基)
  • 原文地址:https://www.cnblogs.com/gfgwxw/p/9622955.html
Copyright © 2011-2022 走看看