Spark SQL Example
This example demonstrates how to use sqlContext.sql to create and load a table and select rows from the table into a DataFrame. The next steps use the
DataFrame API to filter the rows for salaries greater than 150,000 and show the resulting DataFrame.
- At the command-line, copy the Hue sample_07 data to HDFS:
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs
where HUE_HOME defaults to /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue (package installation). - Start spark-shell:
$ spark-shell
- Create a Hive table:
scala> sqlContext.sql("CREATE TABLE sample_07 (code string,description string,total_emp int,salary int) ROW FORMAT DELIMITED FIELDS TERMINATED BY ' ' STORED AS TextFile")
- Load data from HDFS into the table:
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_07.csv' OVERWRITE INTO TABLE sample_07")
- Create a DataFrame containing the contents of the sample_07 table:
scala> val df = sqlContext.sql("SELECT * from sample_07")
- Show all rows with salary greater than 150,000:
scala> df.filter(df("salary") > 150000).show()
The output should be:+-------+--------------------+---------+------+ | code| description|total_emp|salary| +-------+--------------------+---------+------+ |11-1011| Chief executives| 299160|151370| |29-1022|Oral and maxillof...| 5040|178440| |29-1023| Orthodontists| 5350|185340| |29-1024| Prosthodontists| 380|169360| |29-1061| Anesthesiologists| 31030|192780| |29-1062|Family and genera...| 113250|153640| |29-1063| Internists, general| 46260|167270| |29-1064|Obstetricians and...| 21340|183600| |29-1067| Surgeons| 50260|191410| |29-1069|Physicians and su...| 237400|155150| +-------+--------------------+---------+------+