zoukankan      html  css  js  c++  java
  • Mister B and PR Shifts 思维

    题目

    Some time ago Mister B detected a strange signal from the space, which he started to study.

    After some transformation the signal turned out to be a permutation pp of length nn or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.

    Let's define the deviation of a permutation pp as img.

    Find a cyclic shift of permutation pp with minimum possible deviation. If there are multiple solutions, print any of them.

    Let's denote id kk ( 0<=k<n ) of a cyclic shift of permutation pp as the number of right shifts needed to reach this shift, for example:

    • k=0k=0 : shift p_{1},p_{2},... p_{n}p1,p2,... p**n ,
    • k=1k=1 : shift p_{n},p_{1},... p_{n-1}p**n,p1,... p**n−1 ,
    • ...,
    • k=n-1k=n−1 : shift p_{2},p_{3},... p_{n},p_{1}p2,p3,... p**n,p1 .

    输入格式

    First line contains single integer nn ( 2<=n<=10^{6}2<=n<=106 ) — the length of the permutation.

    The second line contains nn space-separated integers p_{1},p_{2},...,p_{n}p1,p2,...,p**n ( 1<=p_{i}<=n1<=p**i<=n ) — the elements of the permutation. It is guaranteed that all elements are distinct.

    输出格式

    Print two integers: the minimum deviation of cyclic shifts of permutation pp and the id of such shift. If there are multiple solutions, print any of them.

    题意翻译

    • 定义一个全排列p_ip**i的偏移值为sum_{i=1}^n|p_i-i|∑i=1np**ii
    • 给你一个全排列,你可以从后面拿kin[0,n-1]k∈[0,n−1]个数放在前面,使得该全排列的偏移值最小,输出这个偏移值和k,如果有多个k任意输出一个
    • nleq 10^6n≤106

    输入输出样例

    输入 #1复制

    3
    1 2 3
    

    输出 #1复制

    0 0
    

    输入 #2复制

    3
    2 3 1
    

    输出 #2复制

    0 1
    

    输入 #3复制

    3
    3 2 1
    

    输出 #3复制

    2 1
    

    说明/提示

    In the first sample test the given permutation pp is the identity permutation, that's why its deviation equals to 00 , the shift id equals to 00 as well.

    In the second sample test the deviation of pp equals to 44 , the deviation of the 11 -st cyclic shift (1,2,3)(1,2,3) equals to 00 , the deviation of the 22 -nd cyclic shift (3,1,2)(3,1,2) equals to 44 , the optimal is the 11 -st cyclic shift.

    In the third sample test the deviation of pp equals to 44 , the deviation of the 11 -st cyclic shift (1,3,2)(1,3,2) equals to 22 , the deviation of the 22 -nd cyclic shift (2,1,3)(2,1,3) also equals to 22 , so the optimal are both 11 -st and 22 -nd cyclic shifts.

    分析

    每次右移,(|p[i]-i|)的值要不就加1,要不就减1。

    可以通过两个变量l,r来记录每次右移加1的个数和减1的个数

    再定义(t[i])表示初始数组中有多少个数在它目标左边的第i个位置

    每次l-=t[i-1],r+=t[i-1]

    每次右移这个式子的和sum为sum-l+r-1- (n-p[n-i+1])+(p[n-i+1]-1)

    /*************************************************************************
    	> File Name: k.cpp
    	> Author: LiuGeXian
    	> Mail: 1019630230@qq.com 
    	> Created Time: 2020/5/8 22:35:41
     ************************************************************************/
    
    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6 + 5;
    int n, m, p[maxn], l, r, t[maxn];
    int sum;
    int k;
    int main(){
    	scanf("%d", &n);
    	for (int i = 1; i <= n; i++){
    		scanf("%d", &p[i]);
    		sum += abs(i - p[i]);
    		if (p[i] >= i){
    			l++;
    			t[p[i]-i]++;
    		}
    		else r++;
    	}
    	int ans = sum;
    	for (int i = 1; i < n; i++){
    		l -= t[i-1];
    		r += t[i-1];
    		sum = sum - l + r - 1 - (n - p[n-i+1]) + (p[n-i+1] - 1);
    		l++;
    		r--;
    		t[p[n-i+1]+i-1]++;
    		if (sum < ans){
    			ans = sum;
    			k = i;
    		}
    	}
    	cout << ans << ' ' << k;
    	return 0;
    }
    
    
  • 相关阅读:
    从零开始搭建Wpf基础9-使用MaterialDesignToolkit对界面进行美化下
    从零开始搭建Wpf基础8-登录界面成功后显示主窗体
    从零开始搭建Wpf基础7-Api数据接入
    从零开始搭建Wpf基础6-Tab选项卡MVVM实现
    Wpf下dragablz使用Prism8进行导航-3
    从零开始搭建Wpf基础5-无限级菜单MVVM实现
    从零开始搭建Wpf基础篇4-使用Prism进行模块化
    从零开始搭建Wpf初学篇3-界面模块化
    手写es5和es6实现原型继承
    判断类型(通用类型检测方法)和手写深拷贝
  • 原文地址:https://www.cnblogs.com/ghosh/p/12859163.html
Copyright © 2011-2022 走看看