本文章是对网易云课堂中的Python网络爬虫实战课程进行总结。感兴趣的朋友可以观看视频课程。课程地址
爬虫简介
一段自动抓取互联网信息的程序
非结构化数据
没有固定的数据格式,如网页资料。
必须通过ETL(Extract,Transformation,Loading)工具将数据转化为结构化数据才能使用。
工具安装
Anaconda
pip install requests
pip install BeautifulSoup4
pip install jupyter
打开jupyter
jupyter notebook
requests 网络资源截取插件
取得页面
import requests
url = ''
res = requests.get(url)
res.encoding = 'utf-8'
print (res.text)
将网页读进BeautifulSoup中
from bs4 import BeautifulSoup
soup = BeautifulSoup(res.text, 'html.parser')
print (soup.text)
使用select方法找找出特定标签的HTML元素,可取标签名或id,class返回的值是一个list
select('h1') select('a')
id = 'thehead' select('#thehead')
alink = soup.select('a')
for link in alink:
print (link['href'])
例子
-
1、取得新浪陕西的新闻时间标题和连接
import requests from bs4 import BeautifulSoup res = requests.get('http://sx.sina.com.cn/') res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') for newslist in soup.select('.news-list.cur'): for news in newslist: for li in news.select('li'): title = li.select('h2')[0].text href = li.select('a')[0]['href'] time = li.select('.fl')[0].text print (time, title, href)
-
2、获取文章的标题,来源,时间和正文
import requests from bs4 import BeautifulSoup from datetime import datetime res = requests.get('http://sx.sina.com.cn/news/b/2018-06-02/detail-ihcikcew5095240.shtml') res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') h1 = soup.select('h1')[0].text source = soup.select('.source-time span span')[0].text timesource = soup.select('.source-time')[0].contents[0].text date = datetime.strptime(timesource, '%Y-%m-%d %H:%M') article = [] for p in soup.select('.article-body p')[:-1]: article.append(p.text.strip()) ' '.join(article)
简写为:
' '.join([p.text.strip() for p in soup.select('.article-body p')[:-1]])
说明:
datatime 包用来格式化时间 [:-1]去除最后一个元素 strip() 移除字符串头尾指定的字符(默认为空格或换行符) ' '.join(article) 将列表以空格连接
-
3、获取文章的评论数,评论数是通过js写入,不能通过上面的方法获取到,在js下,找到文章评论的js
import requests import json comments = requests.get('http://comment5.news.sina.com.cn/cmnt/count?format=js&newslist=sx:comos-hcikcew5095240:0') jd = json.loads(comments.text.strip('var data =')) jd['result']['count']['sx:comos-hcikcew5095240:0']['total']
-
4、将获得评论的方法总结成一个函数
import re import json commenturl = 'http://comment5.news.sina.com.cn/cmnt/count?format=js&newslist=sx:comos-{}:0' def getCommentCounts(url): m = re.search('detail-i(.+).shtml' ,url) newsid = m.group(1) comments = requests.get(commenturl.format(newsid)) jd = json.loads(comments.text.strip('var data =')) return jd['result']['count']['sx:comos-'+newsid+':0']['total'] news = 'http://sx.sina.com.cn/news/b/2018-06-01/detail-ihcikcev8756673.shtml' getCommentCounts(news)
-
5、输入地址得到文章的所有信息(标题、时间、来源、正文等)的函数(完整版)
import requests import json import re from bs4 import BeautifulSoup from datetime import datetime commenturl = 'http://comment5.news.sina.com.cn/cmnt/count?format=js&newslist=sx:comos-{}:0' def getCommentCounts(url): m = re.search('detail-i(.+).shtml' ,url) newsid = m.group(1) comments = requests.get(commenturl.format(newsid)) jd = json.loads(comments.text.strip('var data =')) return jd['result']['count']['sx:comos-'+newsid+':0']['total'] def getNewsDetail(newsurl): result = {} res = requests.get(newsurl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') result['title'] = soup.select('h1')[0].text result['newssource'] = soup.select('.source-time span span')[0].text timesource = soup.select('.source-time')[0].contents[0].text result['date'] = datetime.strptime(timesource, '%Y-%m-%d %H:%M') result['article'] = ' '.join([p.text.strip() for p in soup.select('.article-body p')[:-1]]) result['comments'] = getCommentCounts(newsurl) return result news = 'http://sx.sina.com.cn/news/b/2018-06-02/detail-ihcikcew8995238.shtml' getNewsDetail(news)