etcd是一种无状态的分布式数据存储集群,用于配置共享和服务发现。
值得注意的是,分布式系统中的数据分为控制数据和应用数据。使用 etcd 的场景默认处理的数据都是控制数据,对于应用数据,只推荐数据量很小,但是更新访问频繁的情况。
一、存储服务
A. etcd 数据的组织形式
etcd的API分为两种, 分别用export ETCDCTL_API=3和export ETCDCTL_API=2来区分. 两种API的调用接口不同, 其数据组织形式也不同. API_2下,其key和value都存储在内存中.
而API_3下,key存储在内存中,value存储在硬盘中. 显然, API_3更有优势,因为key是相较于value来说要短小的多. 这里我们讨论的是更为常用的API_3下的数据组织.
在etcd中,key以B树的形式存储在内存中, value以B+树的形式存储在硬盘中. 为什么要以B/B+树的形式来存储呢? 这涉及到一个所有的数据系统都要面对的问题, 如何花更少的时间
将数据从硬盘中读取出来. 众所周知, 计算机的存储体系里, cache> 内存>>> 磁盘, 也就是说对于etcd来说,访问一个数据最大的时间消耗在磁盘访问. 那么就要想方设法降低访问磁盘的
次数. 这个时候B/B+树的优势就体现出来了. 下面详细分析一下.
B/B+树模型的源头是AVL(二叉平衡树). 对于AVL来说, 它每一个节点只存储一个数据, 因此对于一个很庞大的AVL树来说, 访问一个数据的时间复杂度是log2 n. 这里n是这棵AVL树
存储的数据总数. 假设有一个数据总量为1023的AVL, 访问某个数据最坏的情况下需要访问10个节点. 由于AVL树的节点之间不像数元素在内存中连续存储, 这10次节点访问操作
很有可能包含多次磁盘访问. 因此拖慢了访问速度. 而对于B/B+树来说, 设计者将每一个节点的大小设置为内存一个分页的大小(一般是4kb), 而内存的一个分页的大小又等同于磁盘一个数据块的大小.因此, B/B+树相对于AVL来说的优势在于,它在硬盘中读取数据时, 单位是4kb的数据块而不是单个数据. 这样, 它将数据块读取到内存中后再进一步查找,从而大大减少了磁盘I/O的次数. 关于B/B+树在数据库系统应用中更为详细的介绍网上有很多相关资料.不再赘述.至于B树和B+树的区别,B+树只在叶子节点中存储data, 在非叶子节点中只存储search_key, B树在非叶子节点中存储的就是真正的数据.
B. etcd中如何存储一个key-value
了解了B/B+树的概念后, 我们分析一下etcd如何将数据存储到硬盘中. 首先,etcd中有个概念叫revision, 这个revision可以理解为是一个全局变量. 用户每次执行一个操作, 例如插入一个
key-pair, 这个revision就会自增1, 可以理解为这个revision就是一个全局的ID,表示已经执行了多少次操作, 每一次操作都有唯一的revision来识别. 对于内存中的B树来说, 它在进行查找时所使用的search-key是etcd key, 节点中存储的就是revision信息.而硬盘中存储的B+树的search-key就是revision值, 其节点中存储的是etcd key和etcd value. 通过这样的组织结构, etcd做到了保存每一个key 的每一个历史记录.
至此,我们可以梳理一下etcd查找关键字,例如"spe",的过程, 首先etcd根据"spe"去内存中遍历B树, 找到这个key所对应的revision, 这里revision是一组数字,包含了"spe"的每一次修改. 从
这一组revision中找到最大的那一个,如果用户指定了某个revision的话, 那么就取出用户指定的那个. 然后拿着revision去硬盘中查找B+树, 依次将节点读入内存进行查找.直至到达叶子节点,并且最终找到想要的值.
二、