zoukankan      html  css  js  c++  java
  • Kriging插值计算

     

    参考论文:      http://people.ku.edu/~gbohling/cpe940

    # -*- coding: utf-8 -*-
    # ---------------------------------------------------------------------------
    # Kriging.py
    # Created on: 2014-06-12 10:14:21.00000
    #   (generated by ArcGIS/ModelBuilder)
    # Description: 
    # ---------------------------------------------------------------------------
    
    # Import arcpy module
    import os
    import math
    import sys
    
    from pylab import *
    import numpy as np
    from pandas import DataFrame, Series
    from scipy.spatial.distance import pdist, squareform
    
    
    # 计算距离
    
    # dataXYV = [{"x":12100,"y":8300,"v":14.6515},{"x":5300,"y":8700,"v":14.5093},{"x":3500,"y":13900,"v":14.0639},{"x":5100,"y":1900,"v":15.1084},{"x":9900,"y":13700,"v":13.919},{"x":2900,"y":900,"v":13.1304},{"x":7900,"y":6700,"v":14.5724},{"x":16900,"y":4900,"v":15.0814},{"x":18700,"y":1500,"v":13.91},{"x":2700,"y":2100,"v":13.4024},{"x":10700,"y":5100,"v":14.9395},{"x":7500,"y":12900,"v":15.2159},{"x":5500,"y":11100,"v":14.5777},{"x":9500,"y":9100,"v":14.2483},{"x":15300,"y":3100,"v":14.4281},{"x":4700,"y":9700,"v":15.2606},{"x":16700,"y":15700,"v":16.1859},{"x":19500,"y":9700,"v":14.2079},{"x":16900,"y":13100,"v":16.9583},{"x":900,"y":3700,"v":13.8354},{"x":500,"y":11900,"v":14.1859},{"x":9100,"y":1300,"v":14.0381},{"x":9100,"y":13700,"v":14.3685},{"x":9900,"y":12900,"v":13.4018},{"x":6300,"y":100,"v":15.8953},{"x":3700,"y":5100,"v":12.8667},{"x":16300,"y":900,"v":15.1039},{"x":18300,"y":13500,"v":15.7736},{"x":9500,"y":6900,"v":14.1333},{"x":17900,"y":3100,"v":13.3369},{"x":9900,"y":15500,"v":15.1362},{"x":7100,"y":8900,"v":15.0847},{"x":19300,"y":7100,"v":14.2498},{"x":2300,"y":5700,"v":12.6811},{"x":7300,"y":8900,"v":14.9384},{"x":13900,"y":3700,"v":15.6005},{"x":8500,"y":10100,"v":13.7796},{"x":8100,"y":8700,"v":15.2907},{"x":14700,"y":11900,"v":15.6881},{"x":6300,"y":2300,"v":15.3677},{"x":11900,"y":12900,"v":14.3283},{"x":18100,"y":7100,"v":14.7374},{"x":11300,"y":7100,"v":15.0547},{"x":12500,"y":3100,"v":14.8889},{"x":2700,"y":12700,"v":14.436},{"x":2700,"y":4300,"v":12.1491},{"x":8500,"y":11300,"v":13.624},{"x":1500,"y":900,"v":14.188},{"x":7300,"y":1300,"v":14.9072},{"x":10700,"y":4100,"v":15.2029},{"x":7100,"y":1900,"v":15.3468},{"x":3900,"y":8500,"v":15.939},{"x":17100,"y":6100,"v":15.7269},{"x":14100,"y":10100,"v":15.3238},{"x":11500,"y":4900,"v":14.0445},{"x":13300,"y":15700,"v":14.4032},{"x":1900,"y":12100,"v":14.3586},{"x":15100,"y":2900,"v":14.6007},{"x":6500,"y":900,"v":16.1458},{"x":8900,"y":6100,"v":15.7727},{"x":4500,"y":2300,"v":13.6234},{"x":12900,"y":10300,"v":15.1024},{"x":10900,"y":5700,"v":15.3546},{"x":3500,"y":700,"v":13.8431},{"x":16300,"y":3700,"v":14.9427},{"x":900,"y":5100,"v":14.4139},{"x":12900,"y":12900,"v":13.6177},{"x":15300,"y":9300,"v":16.3787},{"x":7300,"y":6900,"v":14.258},{"x":16300,"y":12500,"v":15.7772},{"x":100,"y":8900,"v":14.6553},{"x":1700,"y":11700,"v":14.3627},{"x":17500,"y":11100,"v":15.9659},{"x":14900,"y":8300,"v":16.0095},{"x":8300,"y":10900,"v":13.9639},{"x":4100,"y":14500,"v":14.2649},{"x":11100,"y":15300,"v":15.7684},{"x":500,"y":4900,"v":14.591},{"x":13100,"y":1500,"v":15.1377},{"x":18900,"y":1700,"v":14.095},{"x":3500,"y":7500,"v":15.1486},{"x":3700,"y":6900,"v":13.9584},{"x":14500,"y":13300,"v":14.7381},{"x":4900,"y":9100,"v":15.0689},{"x":9700,"y":5700,"v":15.8042}]
    dataXYV = [{"x":12100.00,"y":8300.00,"v":14.6515},
    {"x":5300.00,"y":8700.00,"v":14.5093},
    {"x":3500.00,"y":13900.00,"v":14.0639},
    {"x":5100.00,"y":1900.00,"v":15.1084},
    {"x":9900.00,"y":13700.00,"v":13.919},
    {"x":2900.00,"y":900.00,"v":13.1304},
    {"x":7900.00,"y":6700.00,"v":14.5724},
    {"x":16900.00,"y":4900.00,"v":15.0814},
    {"x":18700.00,"y":1500.00,"v":13.91},
    {"x":2700.00,"y":2100.00,"v":13.4024},
    {"x":10700.00,"y":5100.00,"v":14.9395},
    {"x":7500.00,"y":12900.00,"v":15.2159},
    {"x":5500.00,"y":11100.00,"v":14.5777},
    {"x":9500.00,"y":9100.00,"v":14.2483},
    {"x":15300.00,"y":3100.00,"v":14.4281},
    {"x":4700.00,"y":9700.00,"v":15.2606},
    {"x":16700.00,"y":15700.00,"v":16.1859},
    {"x":19500.00,"y":9700.00,"v":14.2079},
    {"x":16900.00,"y":13100.00,"v":16.9583},
    {"x":900.00,"y":3700.00,"v":13.8354},
    {"x":500.00,"y":11900.00,"v":14.1859},
    {"x":9100.00,"y":1300.00,"v":14.0381},
    {"x":9100.00,"y":13700.00,"v":14.3685},
    {"x":9900.00,"y":12900.00,"v":13.4018},
    {"x":6300.00,"y":100.00,"v":15.8953},
    {"x":3700.00,"y":5100.00,"v":12.8667},
    {"x":16300.00,"y":900.00,"v":15.1039},
    {"x":18300.00,"y":13500.00,"v":15.7736},
    {"x":9500.00,"y":6900.00,"v":14.1333},
    {"x":17900.00,"y":3100.00,"v":13.3369},
    {"x":9900.00,"y":15500.00,"v":15.1362},
    {"x":7100.00,"y":8900.00,"v":15.0847},
    {"x":19300.00,"y":7100.00,"v":14.2498},
    {"x":2300.00,"y":5700.00,"v":12.6811},
    {"x":7300.00,"y":8900.00,"v":14.9384},
    {"x":13900.00,"y":3700.00,"v":15.6005},
    {"x":8500.00,"y":10100.00,"v":13.7796},
    {"x":8100.00,"y":8700.00,"v":15.2907},
    {"x":14700.00,"y":11900.00,"v":15.6881},
    {"x":6300.00,"y":2300.00,"v":15.3677},
    {"x":11900.00,"y":12900.00,"v":14.3283},
    {"x":18100.00,"y":7100.00,"v":14.7374},
    {"x":11300.00,"y":7100.00,"v":15.0547},
    {"x":12500.00,"y":3100.00,"v":14.8889},
    {"x":2700.00,"y":12700.00,"v":14.436},
    {"x":2700.00,"y":4300.00,"v":12.1491},
    {"x":8500.00,"y":11300.00,"v":13.624},
    {"x":1500.00,"y":900.00,"v":14.188},
    {"x":7300.00,"y":1300.00,"v":14.9072},
    {"x":10700.00,"y":4100.00,"v":15.2029},
    {"x":7100.00,"y":1900.00,"v":15.3468},
    {"x":3900.00,"y":8500.00,"v":15.939},
    {"x":17100.00,"y":6100.00,"v":15.7269},
    {"x":14100.00,"y":10100.00,"v":15.3238},
    {"x":11500.00,"y":4900.00,"v":14.0445},
    {"x":13300.00,"y":15700.00,"v":14.4032},
    {"x":1900.00,"y":12100.00,"v":14.3586},
    {"x":15100.00,"y":2900.00,"v":14.6007},
    {"x":6500.00,"y":900.00,"v":16.1458},
    {"x":8900.00,"y":6100.00,"v":15.7727},
    {"x":4500.00,"y":2300.00,"v":13.6234},
    {"x":12900.00,"y":10300.00,"v":15.1024},
    {"x":10900.00,"y":5700.00,"v":15.3546},
    {"x":3500.00,"y":700.00,"v":13.8431},
    {"x":16300.00,"y":3700.00,"v":14.9427},
    {"x":900.00,"y":5100.00,"v":14.4139},
    {"x":12900.00,"y":12900.00,"v":13.6177},
    {"x":15300.00,"y":9300.00,"v":16.3787},
    {"x":7300.00,"y":6900.00,"v":14.258},
    {"x":16300.00,"y":12500.00,"v":15.7772},
    {"x":100.00,"y":8900.00,"v":14.6553},
    {"x":1700.00,"y":11700.00,"v":14.3627},
    {"x":17500.00,"y":11100.00,"v":15.9659},
    {"x":14900.00,"y":8300.00,"v":16.0095},
    {"x":8300.00,"y":10900.00,"v":13.9639},
    {"x":4100.00,"y":14500.00,"v":14.2649},
    {"x":11100.00,"y":15300.00,"v":15.7684},
    {"x":500.00,"y":4900.00,"v":14.591},
    {"x":13100.00,"y":1500.00,"v":15.1377},
    {"x":18900.00,"y":1700.00,"v":14.095},
    {"x":3500.00,"y":7500.00,"v":15.1486},
    {"x":3700.00,"y":6900.00,"v":13.9584},
    {"x":14500.00,"y":13300.00,"v":14.7381},
    {"x":4900.00,"y":9100.00,"v":15.0689},
    {"x":9700.00,"y":5700.00,"v":15.8042}]
    
    length = len(dataXYV)
    distanceMatrix = [[] for i in range(length)]
    index = 0
    distTotal = 0;
    distMin = 1.0e15
    distMax = -1.0e15
    distAver = 0
    for x in dataXYV:    
        for y in dataXYV:
            z = math.sqrt((x['x']-y['x'])*(x['x']-y['x'])+(x['y']-y['y'])*(x['y']-y['y']))
            distTotal += z
            if z > distMax:
                distMax = z
            if z < distMin and x != y:
                distMin = z
            distanceMatrix[index].append(z)
        index += 1
    distAver =  distTotal / (length * length - length)
    dataInfo = {'count':(length * length - length),  'distAver':distAver,  'distMin':distMin,  'distMax':distMax}
    #print dataInfo
    
    '''
    for i in range(0, length):
        for j in range(0, length):
            print(int(lists[i][j])),
        print(';')
    '''
    
    '''
    查找点对
    '''
    def findPairs(dataXYV, distanceMatrix, minValue, maxValue):
        totalDistance = 0;
        count = 0;
        minDistance = 1.0e15
        maxDistance = -1.0e15
        averageDistance = 0
        pairs = []
        for i in range(0, length):
            for j in range(i+1, length):
                if distanceMatrix[i][j]>minValue and distanceMatrix[i][j]<=maxValue:
                #if math.fabs(dataXYV[i]['x']-dataXYV[j]['x'])>minValue and math.fabs(dataXYV[i]['y']-dataXYV[j]['y'])>minValue and math.fabs(dataXYV[i]['x']-dataXYV[j]['x'])<=maxValue and math.fabs(dataXYV[i]['y']-dataXYV[j]['y'])<=maxValue:
                    # print(int(lists[i][j])),
                    totalDistance += distanceMatrix[i][j]
                    count += 1
                    if distanceMatrix[i][j] >= maxDistance:
                        maxDistance = distanceMatrix[i][j]
                    if distanceMatrix[i][j] <= minDistance:
                        minDistance = distanceMatrix[i][j]
                    pair = {'i':i,'j':j,'iv':dataXYV[i]['v'],'jv':dataXYV[j]['v'],'dist':distanceMatrix[i][j]}
                    pairs.append(pair)
        #print(count)
        averageDistance = totalDistance / count
        info = {'count':count,  'distAver':averageDistance,  'distMin':minDistance,  'distMax':maxDistance}
        #print info
        #print pairs
        return pairs
    
    
    '''
    计算统计信息: 协方差、相关系数、半方变异
    '''
    def computeStatisticInfo(pairs):
        pairCount = len(pairs)
        distanceTotal = 0
        distanceAverage = 0
        #
        v1v2Total=0
        v1Total=0
        v2Total=0
        #
        v1v1Total=0
        v2v2Total=0
        #
        v1_v2Total=0
        #
        for x in pairs: 
            val1 = x['iv']
            val2 = x['jv']
            distanceTotal =  distanceTotal + x['dist']
            v1v2Total = v1v2Total + val1 * val2
            v1Total = v1Total + val1
            v2Total = v2Total + val2
            #
            v1v1Total = v1v1Total + val1 * val1
            v2v2Total = v2v2Total + val2 * val2
            #
            v1_v2Total = v1_v2Total + math.pow(val1 - val2, 2)
            #    
        distanceAverage =  distanceTotal / pairCount    
        v1v2Covariance = v1v2Total / pairCount - v1Total * v2Total / (pairCount  * pairCount)
        v1v2Corelation = (v1v2Total*pairCount - v1Total * v2Total) / math.sqrt(v1v1Total * pairCount - v1Total * v1Total) / math.sqrt(v2v2Total * pairCount - v2Total * v2Total)
        v1v2Semivariance = v1_v2Total / (pairCount * 2)
        statisticInfo = {'covariance':v1v2Covariance, 'corelation':v1v2Corelation, 'semivariance':v1v2Semivariance, 'count':pairCount, 'distAver':distanceAverage}  # 
        # print statisticInfo
        return statisticInfo
    
    '''
    计算各种lagSize下的统计信息: 协方差、相关系数、半方变异
    '''
    def staticInfoAll(dataXYV, distanceMatrix, lagCellSize, lagCount):
        semiLagCellSize = lagCellSize / 2
        pairsStaticInfos = []
        for i in range(0, lagCount-1):        
            
            lagSize = lagCellSize * i
            lagMin = lagSize - semiLagCellSize
            if lagMin < 0:
                lagMin = 0
            lagMax = lagSize + semiLagCellSize
            #print(lagMin, lagMax,  lagSize)
              
            '''
            lagMin = lagCellSize * i
            lagMax = lagCellSize * (i + 1)
            lagSize = (lagCellSize * i + lagCellSize * (i + 1))/2
            #print lagMin,  lagMax,  lagSize
            '''
            pairs = findPairs(dataXYV, distanceMatrix, lagMin, lagMax)
            statisticInfo = computeStatisticInfo(pairs)
            statisticInfo['lagSize'] = lagSize
            print(lagMin, lagMax, statisticInfo['lagSize'], statisticInfo['count'], statisticInfo['distAver'], statisticInfo['covariance'], statisticInfo['corelation'], statisticInfo['semivariance'])
            pairsStaticInfos.append(statisticInfo)
        return pairsStaticInfos
    '''
    def computeC0(dataXYV):
        valueTotal = 0;
        valueAver = 0;
        variance = 0;
        for x in dataXYV:
            valueTotal += x['v']
        valueAver = valueTotal / length
        print valueAver
        for x in dataXYV:
            variance += math.pow((x['v'] - valueAver),2)
        variance = variance / length
        # variance = math.sqrt(variance)
        print variance
    
    computeC0(dataXYV)
    '''
    
    
    
    def optimization(pairsStaticInfos):    
        aMin = 0
        cMin = 0
        varianceTotalMin = 1.0e45
        hSize = len(pairsStaticInfos)
        for aValue in range( 3500, 4500):
            for c1Value in range(60, 99):
                cValue = c1Value / 100.0
                #cValue = 0.78
                #print(aValue, cValue)
                #print(aValue, cValue)
                varianceTotal = 0
                for x in pairsStaticInfos:
                    y = spherical( x['distAver'], aValue, cValue )  #  distAver  lagSize
                    #print y, x['semivariance']
                    varianceTotal = varianceTotal + ((y - x['semivariance'])**2.0) * x['count']
                varianceTotal = varianceTotal / hSize
                #print varianceTotal
                if varianceTotal <= varianceTotalMin:
                    varianceTotalMin = varianceTotal
                    aMin = aValue
                    cMin = cValue
                    #print(aMin, cMin, varianceTotalMin)
        
        para = {"a":aMin, "c0":cMin}
        print(para)
        return para
    
    def spherical( h, a, C0):
        if h <= a:
            return (C0*( 1.5*h/a - 0.5*(h/a)**3.0 ))
        else:
            return C0
    
    pairsStaticInfos = staticInfoAll(dataXYV, distanceMatrix, 1000, 12) # 500, 25
    
    para = optimization(pairsStaticInfos)
    
    
    lagSize = []
    semivariance = []
    modelY = []
    modelYY = []
    #
    lagSize.append(0)
    semivariance.append(0)
    modelY.append(0)
    for x in pairsStaticInfos:
        y = spherical( x['distAver'], para['a'], para['c0'] )
        #yy= spherical( x['distAver'], 4141, para['c0'] )
        lagSize.append(x['distAver'])
        semivariance.append(x['semivariance'])
        modelY.append(y)
        modelYY.append(yy)
    
    plot( lagSize, semivariance, 'o' )
    plot( lagSize, modelY, '.-'  ) ;
    title('Spherical Model')
    ylabel('Semivariance')
    xlabel('Lag [m]')
  • 相关阅读:
    数据结构与算法JavaScript (一) 栈
    js架构设计模式——前端MVVM框架设计及实现(二)
    js架构设计模式——前端MVVM框架设计及实现(一)
    js架构设计模式——MVC,MVP 和 MVVM 的图示及简单明了的区别说明
    js架构设计模式——你对MVC、MVP、MVVM 三种组合模式分别有什么样的理解?
    js面向对象oop编程
    js模块化开发——前端模块化
    SPRING 集成 activemq 的 topic 模式
    linux yum 本地源配置
    ORACLE 导入的问题
  • 原文地址:https://www.cnblogs.com/gispathfinder/p/5779366.html
Copyright © 2011-2022 走看看