/*
* @lc app=leetcode id=62 lang=cpp
*
* [62] Unique Paths
*
* https://leetcode.com/problems/unique-paths/description/
*
* algorithms
* Medium (46.62%)
* Total Accepted: 268.7K
* Total Submissions: 574.4K
* Testcase Example: '3
2'
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in
* the diagram below).
*
* The robot can only move either down or right at any point in time. The robot
* is trying to reach the bottom-right corner of the grid (marked 'Finish' in
* the diagram below).
*
* How many possible unique paths are there?
*
*
* Above is a 7 x 3 grid. How many possible unique paths are there?
*
* Note: m and n will be at most 100.
*
* Example 1:
*
*
* Input: m = 3, n = 2
* Output: 3
* Explanation:
* From the top-left corner, there are a total of 3 ways to reach the
* bottom-right corner:
* 1. Right -> Right -> Down
* 2. Right -> Down -> Right
* 3. Down -> Right -> Right
*
*
* Example 2:
*
*
* Input: m = 7, n = 3
* Output: 28
*
*/
class Solution {
public:
int uniquePaths(int m, int n) {
if (m == 1 && n ==1)
return 1;
int right = 0,left = 0;
if(m > 1) right = uniquePaths(m-1,n);
if(n > 1) left = uniquePaths(m,n-1);
return right + left;
}
};
class Solution {
public:
int uniquePaths(int m, int n) {
int ways[m][n];
for(int i = 0;i < m;++i){
for(int j = 0;j < n; ++j){
if(i == 0 || j == 0) ways[i][j] = 1;
else
{
ways[i][j] = ways[i-1][j] + ways[i][j-1];
}
}
}
return ways[m-1][n-1];
}
};
class Solution {
public:
int uniquePaths(int m, int n) {
int ways[n]={0};
ways[0] = 1;
for(int i = 0;i < m;++i){
for(int j = 1;j < n; ++j){
ways[j] += ways[j-1];
}
}
return ways[n-1];
}
};
首先是朴素的递归思想;
其次是根据动态规划的状态转移方程进行优化;
再对存储进行优化;