zoukankan      html  css  js  c++  java
  • facenet 人脸识别(二)——创建人脸库搭建人脸识别系统

    搭建人脸库

    选择的方式是从百度下载明星照片

    照片下载,downloadImageByBaidu.py

    # coding=utf-8
    """
    爬取百度图片的高清原图
    """
    import re
    import sys
    import urllib
    import os
     
    import requests
     
     
    def get_onepage_urls(onepageurl):
        if not onepageurl:
            print('执行结束')
            return [], ''
        try:
            html = requests.get(onepageurl).text
        except Exception as e:
            print(e)
            pic_urls = []
            fanye_url = ''
            return pic_urls, fanye_url
        pic_urls = re.findall('"objURL":"(.*?)",', html, re.S)
        fanye_urls = re.findall(re.compile(r'<a href="(.*)" class="n">下一页</a>'), html, flags=0)
        fanye_url = 'http://image.baidu.com' + fanye_urls[0] if fanye_urls else ''
        return pic_urls, fanye_url
     
     
    def down_pic(pic_urls,pic_name,localPath):
        if not os.path.exists(localPath):  # 新建文件夹
            os.mkdir(localPath)
        """给出图片链接列表, 下载图片"""
        for i, pic_url in enumerate(pic_urls):
            try:
                pic = requests.get(pic_url, timeout=15)
                string = pic_name + "_" + str(i + 1) + '.jpg'
                with open(localPath + '%s' % string, 'wb')as f:
                    f.write(pic.content)
                    print('成功下载第%s张图片: %s' % (str(i + 1), str(pic_url)))
            except Exception as e:
                print('下载第%s张图片时失败: %s' % (str(i + 1), str(pic_url)))
                print(e)
                continue
     
     
    if __name__ == '__main__':
        keyword = '范冰冰1920*1080'  # 关键词, 改为你想输入的词即可
        url_init_first = r'http://image.baidu.com/search/flip?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=result&fr=&sf=1&fmq=1497491098685_R&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&ctd=1497491098685%5E00_1519X735&word='
        url_init = url_init_first + urllib.parse.quote(keyword, safe='/')
        all_pic_urls = []
        onepage_urls, fanye_url = get_onepage_urls(url_init)
        all_pic_urls.extend(onepage_urls)
     
        fanye_count = 1  # 图片所在页数,下载完后调整这里就行
        while 1:
            onepage_urls, fanye_url = get_onepage_urls(fanye_url)
            fanye_count += 1
            print('第%s页' % fanye_count)
            if fanye_url == '' and onepage_urls == []:
                break
            all_pic_urls.extend(onepage_urls)
     
        down_pic(list(set(all_pic_urls)),'fbb','D:/eclipse-workspace/facenet-master/data/face_store/fbb/')#保存位置也可以修改

     

    因为是从网上下载的照片有些是不符的,需要手动删除部分

    检测对齐人脸

    python srcalignalign_dataset_mtcnn.py data/face_store/old data/face_store/new --image_size 160 --margin 32 --random_order --gpu_memory_fraction 0.25

    用自己的人脸库结合SVM训练一个人脸识别系统

    用到的代码:calssifier.py,这个程序的基本原理是:通过用图像算出来的向量数据来训练一个SVM分类器,从而对人的身份进行一个判断,同时在.pkl格式的文件中存储每一个分类。这也是作者对于FaceNet程序应用的一个探索。 
    这个函数有两个模式,一个模式用来训练,另一个模式用来测试。具体功能如下:

    模式= TRAIN:

    使用来自数据集的计算出来的向量来训练分类器 
    将训练好的分类模型保存为python pickle文件

    模式= CLASSIFY:

    加载分类模型
    使用来自数据集测试部分的嵌入来测试分类器

    执行本代码需要添加的参数以及各参数的含义:

    mode: 设定“TRAIN”和“CLASSIFY”两种模式。
    data_dir: 图片数据所在文件夹
    model: 训练好的模型
    classifier_filename:类似于标签,如果mode参数是TRAIN,那么需要指定一个输出的文件位置(以.pkl结尾,例如/.pkl),如果mode参数是CLASSIFY,那么就需要指定参数的路径(.pkl文件)。

    python srcclassifier.py TRAIN D:eclipse-workspacefacenet-masterdataface_store
    ew D:eclipse-workspacefacenet-mastermodels20180408-102900 D:eclipse-workspacefacenet-mastermodelsclassifier.pkl
    

    python srcclassifier.py CLASSIFY D:eclipse-workspacefacenet-masterdataface_store
    ew D:eclipse-workspacefacenet-mastermodels20180408-102900 D:eclipse-workspacefacenet-mastermodelsclassifier.pkl
    

    验证

    调用facenet-mastercontributedpredict.py

    网上找张女神的图片

     

    python contributedpredict.py D:eclipse-workspacefacenet-masterdata	est	est1.jpg D:eclipse-workspacefacenet-mastermodels20180408-102900 D:eclipse-workspacefacenet-mastermodelsclassifier.pkl
    

    再找一张不在人脸库的照片

     

    python contributedpredict.py D:eclipse-workspacefacenet-masterdata	est	est2.png D:eclipse-workspacefacenet-mastermodels20180408-102900 D:eclipse-workspacefacenet-mastermodelsclassifier.pkl
    

    后续打算基于摄像头进行人脸检测识别


    摄像头识别人脸效果

    修改contributed目录下的face.py

    执行

    python contributed
    eal_time_face_recognition.py

    最后,附上原来的文件中各py文件的作用(持续更新):

    一、主要函数

    facenet/src/align/ :用于人脸检测与人脸对齐的神经网络

    facenet/src/facenet.py :用于人脸映射的神经网络

    facenet/util/plot_learning_curves.m :这是用来在训练softmax模型的时候用matlab显示训练过程的程序

    二、facenet/contributed/相关函数:

    1、基于mtcnn与facenet的人脸聚类

    代码:facenet/contributed/cluster.py(facenet/contributed/clustering.py实现了相似的功能,只是没有mtcnn进行检测这一步)

    主要功能:

    ① 使用mtcnn进行人脸检测并对齐与裁剪

    ② 对裁剪的人脸使用facenet进行embedding

    ③ 对embedding的特征向量使用欧式距离进行聚类

    2、基于mtcnn与facenet的人脸识别(输入单张图片判断这人是谁)

    代码:facenet/contributed/predict.py

    主要功能:

    ① 使用mtcnn进行人脸检测并对齐与裁剪

    ② 对裁剪的人脸使用facenet进行embedding

    ③ 执行predict.py进行人脸识别(需要训练好的svm模型)

    3、以numpy数组的形式输出人脸聚类和图像标签

    代码:facenet/contributed/export_embeddings.py

    主要功能:

    ① 需要对数据进行对齐与裁剪做为输入数据

    ② 输出embeddings.npy;labels.npy;label_strings.npy

  • 相关阅读:
    钱伟长的养生之道:每天步行三千步
    GBDT 深入理解
    整形数据的存储方式
    进制基础学习
    C语言运算符(注意事项)
    PHP文件锁
    gcc options选项的优化及选择
    Datenode无法启动
    如何使用WebUploader。
    thinkphp如何实现伪静态
  • 原文地址:https://www.cnblogs.com/gmhappy/p/9472387.html
Copyright © 2011-2022 走看看