zoukankan      html  css  js  c++  java
  • 基于谷歌开源的TensorFlow Object Detection API视频物体识别系统搭建自己的应用(二)

    基于上篇基于谷歌开源的TensorFlow Object Detection API视频物体识别系统搭建自己的应用(一),实现视频物体识别

    基于上篇,新建VideoTest.py,并将一个视频文件放入到object_detection目录下


    主要步骤如下: 
    1.使用 VideoFileClip 函数从视频中抓取图片。 
    2.用fl_image函数将原图片替换为修改后的图片,用于传递物体识别的每张抓取图片。 
    3.所有修改的剪辑图像被组合成为一个新的视频。

    废话不多说,直接上代码:

    # coding: utf-8
    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    from object_detection.utils import ops as utils_ops
    
    if tf.__version__ < '1.4.0':
        raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
      
    # This is needed to display the images.
    from object_detection.utils import label_map_util
    
    from object_detection.utils import visualization_utils as vis_util
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    ##Model preparation##
    
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29'
    MODEL_FILE = MODEL_NAME + '.tar.gz'
    DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
    
    NUM_CLASSES = 90
    
    ## Download Model##
    #opener = urllib.request.URLopener()
    #opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
    tar_file = tarfile.open(MODEL_FILE)
    for file in tar_file.getmembers():
      file_name = os.path.basename(file.name)
      if 'frozen_inference_graph.pb' in file_name:
        tar_file.extract(file, os.getcwd())
        
    ## Load a (frozen) Tensorflow model into memory.
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
        
    ## Loading label map
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    
    import imageio
    imageio.plugins.ffmpeg.download()
    
    from moviepy.editor import VideoFileClip
    from IPython.display import HTML
    
    def detect_objects(image_np, sess, detection_graph):
        # 扩展维度,应为模型期待: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image_np, axis=0)
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
    
        # 每个框代表一个物体被侦测到
        boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
    
        #每个分值代表侦测到物体的可信度.  
        scores = detection_graph.get_tensor_by_name('detection_scores:0')
        classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')
    
        # 执行侦测任务.  
        (boxes, scores, classes, num_detections) = sess.run(
            [boxes, scores, classes, num_detections],
            feed_dict={image_tensor: image_np_expanded})
    
        # 检测结果的可视化
        vis_util.visualize_boxes_and_labels_on_image_array(
            image_np,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=8)
        return image_np
    
    def process_image(image):
        # NOTE: The output you return should be a color image (3 channel) for processing video below
        # you should return the final output (image with lines are drawn on lanes)
        with detection_graph.as_default():
            with tf.Session(graph=detection_graph) as sess:
                image_process = detect_objects(image, sess, detection_graph)
                return image_process
            
    white_output = 'video1_out.mp4'
    clip1 = VideoFileClip("video1.mp4").subclip(10,20)
    white_clip = clip1.fl_image(process_image) #NOTE: this function expects color images!!s
    white_clip.write_videofile(white_output, audio=False)
    
    from moviepy.editor import *
    clip1 = VideoFileClip("video1_out.mp4")
    clip1.write_gif("final.gif")  

    代码解释:


    此处会下载一个剪辑必备的程序ffmpeg.win32.exe,内网下载过程中容易断线,可以使用下载工具下载完然后放入如下路径: 
    C:Users用户名AppDataLocalimageioffmpegffmpeg.win32.exe


    首先,使用VideoFileClip函数从视频中提取图像,提取10至20S的图像


    然后使用fl_image函数通过替换帧来修改剪辑的图像,并通过调用process_image在上面应用物体识别API。fl_image是一个很有用的函数,可以提取图像并把它替换为修改后的图像。通过这个函数就可以实现在每个视频上提取图像并应用物体识别;


    最后,把所有处理过的图像片段合并成一个新视频。



    至此识别视频中的物体已完成。

  • 相关阅读:
    零售行业解决方案一
    N-Tier Entity Framework开源项目介绍
    软件代码生成之Codesmith模板.netTiers
    ActiveMQ消息队列介绍
    EntityFramework动态多条件查询与Lambda表达式树
    GitLab版本管理
    REST服务介绍
    2014年物联网Internet of Things应用简介
    wordpress如何屏蔽wp-json(禁用REST API)
    bootstrap tab切换如何让鼠标移动自动切换内容
  • 原文地址:https://www.cnblogs.com/gmhappy/p/9472425.html
Copyright © 2011-2022 走看看