zoukankan      html  css  js  c++  java
  • 机器学习-聚类算法2

    聚类算法就是通过一个固定的准则将若干个数据分成不同的类,而这个准则就是算法,即分类的标准。

    1.样本:

    数据是这样的,300个数据点:

    186.663    202.772
    198.676    148.778
    143.059    205.835
    124.315    209.143
    183.409    151.252
    186.651    184.617
    152.448    213.176
    193.86    187.893
    147.529    260.705
    192.255    195.25
    199.348    246.308
    193.697    188.236
    112.12    201.993
    168.106    211.265
    212.573    186.155
    196.042    189.468
    163.708    204.957
    181.054    220.624
    158.703    168.099
    159.757    184.74
    196.79    192.998
    186.786    210.828
    196.497    207.053
    198.588    202.922
    181.534    173.303
    163.578    213.044
    179.282    176.883
    196.609    190.543
    138.516    157.012
    195.177    156.58
    190.53    182.799
    185.528    198.14
    142.969    164.181
    179.023    247.875
    214.873    197.911
    205.648    225.069
    152.519    237.886
    117.663    200.206
    195.056    178.23
    206.471    231.914
    195.335    134.527
    179.842    192.186
    201.969    232.993
    146.255    179.038
    205.406    208.909
    116.01    196.927
    209.268    204.178
    194.259    198.687
    178.556    182.883
    198.249    194.934
    196.83    190.598
    194.126    171.121
    119.272    163.223
    170.944    150.63
    182.481    206.846
    186.658    190.327
    197.471    162.009
    159.709    209.665
    199.476    211.293
    206.748    245.509
    206.406    204.516
    176.252    199.142
    190.133    229.646
    178.712    188.019
    151.013    237.015
    176.742    212.558
    182.972    201.977
    199.323    146.504
    156.122    239.561
    186.448    192.126
    179.963    192.297
    198.579    185.982
    188.084    201.899
    183.696    243.438
    147.175    193.677
    191.479    191.342
    108.569    191.222
    182.775    136.605
    130.451    156.001
    214.888    193.649
    161.908    148.296
    159.809    178.67
    204.497    154.195
    171.158    222.761
    196.04    181.647
    179.137    199.344
    153.147    151.605
    196.244    142.589
    207.977    225.414
    154.339    236.739
    207.607    225.961
    191.832    171.313
    164.26    215.03
    197.486    96.329
    199.638    59.965
    211.683    54.121
    151.582    23.532
    271.28    71.503
    264.923    101.928
    167.617    100.39
    202.113    114.749
    274.472    35.1
    209.937    18.919
    260.42    52.741
    157.854    27.62
    227.209    102.074
    188.259    90.859
    198.543    120.785
    141.484    26.01
    167.229    72.261
    205.988    117.576
    196.063    87.301
    156.426    31.878
    282.295    68.04
    291.867    17.576
    255.483    38.275
    185.408    89.429
    279.012    66.076
    275.475    47.206
    273.288    47.413
    214.551    77.592
    195.28    47.477
    233.479    84.275
    201.75    121.026
    258.297    100.726
    145.24    17.732
    168.497    80.165
    152.201    87.073
    156.81    100.006
    40.015    274.342
    111.668    225.726
    132.572    318.502
    81.682    208.127
    92.682    313.257
    83.935    256.664
    63.135    259.184
    124.016    260.574
    3.4    228.494
    24.468    221.772
    100.061    316.453
    98.86    271.581
    13.752    219.064
    110.894    212.33
    41.353    304.508
    15.272    280.954
    56.536    239.835
    37.807    221.051
    5.459    224.69
    63.999    248.93
    78.504    363.068
    138.674    288.375
    95.426    268.569
    95.851    352.587
    115.264    219.745
    19.005    214.403
    24.337    251.301
    138.374    262.933
    3.097    201.849
    111.099    296.603
    68.028    279.671
    225.167    197.408
    281.761    153.633
    265.153    201.25
    234.606    199.763
    242.599    161.636
    288.481    181.345
    232.487    146.963
    239.962    247.851
    230.852    155.934
    287.084    207.745
    258.476    253.752
    245.504    250.344
    231.481    220.091
    289.341    158.156
    224.293    218.578
    274.152    194.052
    266.65    199.529
    220.442    169.775
    273.666    154.976
    278.837    166.881
    287.532    188.421
    269.012    263.561
    254.356    209.196
    326.444    240.195
    269.494    130.213
    274.942    181.885
    351.502    294.563
    239.381    257.045
    285.555    174.956
    237.724    166.39
    318.404    240.652
    228.208    161.013
    219.366    203.459
    233.696    243.415
    228.683    182.809
    280.194    173.569
    238.482    195.29
    236.198    181.33
    223.364    173.82
    286.391    157.439
    220.934    198.874
    273.372    212.147
    260.989    286.917
    182.289    367.853
    362.761    317.836
    209.364    310.228
    177.461    291.76
    205.365    375.53
    237.474    355.536
    187.025    392.858
    294.034    353.4
    251.77    341.213
    306.181    318.855
    258.727    362.831
    193.536    338.408
    284.516    335.944
    264.24    275.262
    155.706    317.301
    137.6    339.338
    217.667    288.749
    228.865    389.289
    156.911    365.382
    196.577    267.226
    131.481    380.664
    243.27    284.093
    340.328    328.199
    129.81    383.682
    227.398    285.797
    210.289    305.682
    121.652    351.048
    214.065    380.543
    165.671    344.769
    297.968    358.993
    180.87    319.932
    229.68    334.947
    229.294    275.786
    280.687    361.591
    214.035    396.153
    205.155    332.869
    188.183    269.347
    245.506    349.31
    136.127    127.038
    103.733    3.847
    117.045    109.702
    20.688    130.31
    99.413    143.018
    42.53    102.254
    134.522    51.703
    127.222    145.689
    44.47    79.918
    25.086    74.267
    80.817    67.636
    40.818    76.988
    66.217    99.708
    92.698    155.32
    118.949    141.192
    111.029    146.341
    92.091    68.269
    95.929    88.974
    112.129    32.055
    13.645    123.95
    98.771    119.907
    89.082    80.095
    44.047    61.279
    137.867    117.784
    97.626    166.542
    0    129.274
    105.707    154.582
    93.265    44.732
    35.537    156.558
    82.69    151.633
    118.047    9.606
    57.817    66.352
    310.759    112.875
    370.382    182.441
    394.08    164.391
    353.638    137.656
    362.721    63.942
    348.123    194.11
    353.612    138.251
    351.363    152.021
    357.519    126.935
    289.905    94.706
    353.809    213.003
    392.191    162.078
    331.554    147.666
    313.834    93.734
    343.987    86.263
    382.006    206.06
    386.329    131.662
    310.848    147.063
    308.198    75.715
    314.647    88.739
    286.943    139.761
    377.336    144.399
    400    164.092
    363.689    199.723
    297.952    131.461
    361.09    80.444
    372.778    172.28

    这些数据显示成图形,如下图:

    如上图,这是三百个数据点,单凭肉眼看,我无法分别点和点,那个和哪个是同一类,这些点很没有规律,但是请看下图:

    如上图:我便可以看清楚这个点与点之间是有联系的,经过连线我看到了点与点之间的关系,将它们可以分成七个类(簇),大致的块我都可以说出来,这些个点程序是怎么找出来的。

    2.核心思想:

           1. 将数据分为k个非空子集

           2. 计算每个类中心点(k-means<centroid>中心点是所有点的average),记为seed point

           3. 将每个object聚类到最近seed point

           4. 返回2,当聚类结果不再变化的时候stop

    代码:来自于维基百科:

    #!/usr/bin/python
    # -*- coding: UTF-8 -*-
    
    from math import pi, sin, cos
    from collections import namedtuple
    from random import random, choice
    from copy import copy
    
    try:
        import psyco
    
        psyco.full()
    except ImportError:
        pass
    
    FLOAT_MAX = 1e100
    
    
    class Point:
        __slots__ = ["x", "y", "group"]
    
        def __init__(self, x=0.0, y=0.0, group=0):
            self.x, self.y, self.group = x, y, group
    
    
    """
    创建数据源,先初始化300个点对象,再循环赋值
    """
    def generate_points(npoints, radius):
        points = [Point() for _ in xrange(npoints)]
    
        # note: this is not a uniform 2-d distribution
        for p in points:
            r = random() * radius
            ang = random() * 2 * pi
            p.x = r * cos(ang)
            p.y = r * sin(ang)
    
        return points
    
    
    def nearest_cluster_center(point, cluster_centers):
        """Distance and index of the closest cluster center"""
    
        def sqr_distance_2D(a, b):
            return (a.x - b.x) ** 2 + (a.y - b.y) ** 2
    
        min_index = point.group
        min_dist = FLOAT_MAX
    
        for i, cc in enumerate(cluster_centers):
            d = sqr_distance_2D(cc, point)
            if min_dist > d:
                min_dist = d
                min_index = i
    
        return (min_index, min_dist)
    
    
    '''
    points是数据点,nclusters是给定的簇类数目
    cluster_centers包含初始化的nclusters个中心点,开始都是对象->(0,0,0)
    '''
    
    
    def kpp(points, cluster_centers):
        cluster_centers[0] = copy(choice(points)) #随机选取第一个中心点
        d = [0.0 for _ in xrange(len(points))] #列表,长度为len(points),保存每个点离最近的中心点的距离
    
        for i in xrange(1, len(cluster_centers)): # i=1...len(c_c)-1
            sum = 0
            for j, p in enumerate(points):
                d[j] = nearest_cluster_center(p, cluster_centers[:i])[1]#第j个数据点p与各个中心点距离的最小值
                sum += d[j]
    
            sum *= random()
    
            for j, di in enumerate(d):
                sum -= di
                if sum > 0:
                    continue
                cluster_centers[i] = copy(points[j])
                break
    
        for p in points:
            p.group = nearest_cluster_center(p, cluster_centers)[0]
    
    '''
    points是数据点,nclusters是给定的簇类数目
    '''
    def lloyd(points, nclusters):
        cluster_centers = [Point() for _ in xrange(nclusters)]#根据指定的中心点个数,初始化中心点,均为(0,0,0)
    
        # call k++ init
        kpp(points, cluster_centers) #选择初始种子点
    
        lenpts10 = len(points) >> 10
    
        changed = 0
        while True:
            # group element for centroids are used as counters
            for cc in cluster_centers:
                cc.x = 0
                cc.y = 0
                cc.group = 0
    
            for p in points: #与该种子点在同一簇的数据点的个数
                cluster_centers[p.group].group += 1
                cluster_centers[p.group].x += p.x
                cluster_centers[p.group].y += p.y
    
            for cc in cluster_centers:#生成新的中心点
                cc.x /= cc.group
                cc.y /= cc.group
    
            # find closest centroid of each PointPtr
            changed = 0 #记录所属簇发生变化的数据点的个数
            for p in points:
                min_i = nearest_cluster_center(p, cluster_centers)[0]
                if min_i != p.group:
                    changed += 1
                    p.group = min_i
    
            # stop when 99.9% of points are good
            if changed <= lenpts10:
                break
    
        for i, cc in enumerate(cluster_centers):
            cc.group = i
    
        return cluster_centers
    
    
    def print_eps(points, cluster_centers, W=400, H=400):
        Color = namedtuple("Color", "r g b");
    
        colors = []
        for i in xrange(len(cluster_centers)):
            colors.append(Color((3 * (i + 1) % 11) / 11.0,
                                (7 * i % 11) / 11.0,
                                (9 * i % 11) / 11.0))
    
        max_x = max_y = -FLOAT_MAX
        min_x = min_y = FLOAT_MAX
    
        for p in points:
            if max_x < p.x: max_x = p.x
            if min_x > p.x: min_x = p.x
            if max_y < p.y: max_y = p.y
            if min_y > p.y: min_y = p.y
    
        scale = min(W / (max_x - min_x),
                    H / (max_y - min_y))
        cx = (max_x + min_x) / 2
        cy = (max_y + min_y) / 2
    
        print "%%!PS-Adobe-3.0
    %%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10)
    
        print ("/l {rlineto} def /m {rmoveto} def
    " +
               "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def
    " +
               "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " +
               "   gsave 1 setgray fill grestore gsave 3 setlinewidth" +
               " 1 setgray stroke grestore 0 setgray stroke }def")
    
        for i, cc in enumerate(cluster_centers):
            print ("%g %g %g setrgbcolor" %
                   (colors[i].r, colors[i].g, colors[i].b))
    
            for p in points:
                if p.group != i:
                    continue
                print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2,
                                        (p.y - cy) * scale + H / 2))
    
            print ("
    0 K中心 %g %g s" % ((cc.x - cx) * scale + W / 2,
                                            (cc.y - cy) * scale + H / 2))
    
        print "
    %%%%EOF"
    
    
    def main():
        npoints = 300
        k = 7  # # clusters
    
        points = generate_points(npoints, 10)
        cluster_centers = lloyd(points, k)
        print_eps(points, cluster_centers)
    
    
    main()
    

     3.计算结果:

    计算出的7个点是:

    数据视图:

    178.432	194.88
    211.643	69.3258
    70.6203	261.456
    258.91	196.902
    221.139	334.234
    82.3629	100.829
    347.752	138.943
    

    全局分类结果:

    结果二:

  • 相关阅读:
    Discuz 3.4首次登录论坛没有样式,进入管理后台设置即可
    Discuz论坛安装全过程
    linux安装nginx make&make install报错:make: *** No rule to make target `build‘, needed by `default‘. Sto
    DiscuzX 3.4 R20191201
    Java递归查询某个节点下所有子节点多级信息(递归部门查询,递归树形结构数据查询)
    常用设备默认帐号密码
    打印机安装(deepin v15.11+hp laser jet 1020 plus)
    deepin v15.11新装系统后的个性化设置
    deepin网卡上网相关
    存储相关 HDD硬盘 SSD硬盘
  • 原文地址:https://www.cnblogs.com/gnool/p/6662956.html
Copyright © 2011-2022 走看看