zoukankan      html  css  js  c++  java
  • caffe 利用VGG训练自己的数据

    写这个是因为有童鞋在跑VGG的时候遇到各种问题,供参考一下。

    网络结构

    以VGG16为例,自己跑的细胞数据

    solver.prototxt:

    net: "/media/dl/source/Experiment/cell/test/vgg/vgg16.prototxt"
    test_iter: 42
    test_interval: 1000
    base_lr: 0.0001
    lr_policy: "step"
    gamma: 0.1
    stepsize: 100000
    display: 200
    max_iter: 200000
    momentum: 0.9
    weight_decay: 0.0005
    snapshot: 100000
    snapshot_prefix: "/media/dl/source/Experiment/cell/test/vgg/vgg"
    solver_mode: GPU

    vgg16.prototxt:

    注意,这里的数据层我是用的“ImageData”格式,也就是没有转为LMDB,直接导入图片进去的,因为我用的服务器,为了方便。如果为了更高效,还是使用LMDB数据库的形式。使用LMDB数据库形式的数据层我也写了下,放在这个prototxt后面作为补充。

    另外,注意修改最后一个全连接层的num_output为自己的类别数。并修改该层的名字,如我改为了“cellfc8”,是为了finetune vgg时重新训练该层,不使用该层的预训练参数。

      1 name: "VGG16"
      2 layer {
      3   name: "data"
      4   type: "ImageData"
      5   top: "data"
      6   top: "label"
      7   include {
      8     phase: TRAIN
      9   }
     10   # transform_param {
     11   #   mirror: true
     12   #   crop_size: 224
     13   #   mean_file: "data/ilsvrc12_shrt_256/imagenet_mean.binaryproto"
     14   # }
     15 
     16   image_data_param {
     17     source: "/media/dl/source/Experiment/cell/data/trainnew2_resize/trainnew.txt"
     18     batch_size: 20
     19     shuffle:true
     20     #is_color: false 
     21     new_height: 224
     22     new_ 224
     23   }
     24 }
     25 layer {
     26   name: "data"
     27   type: "ImageData"
     28   top: "data"
     29   top: "label"
     30   include {
     31     phase: TEST
     32   }
     33   # transform_param {
     34   #   mirror: false
     35   #   crop_size: 224
     36   #   mean_file: "data/ilsvrc12_shrt_256/imagenet_mean.binaryproto"
     37   # }
     38 
     39   image_data_param {
     40     source: "/media/dl/source/Experiment/cell/data/val2_resize/valnew.txt"
     41     batch_size: 50
     42     #is_color: false
     43     new_height: 224
     44     new_ 224
     45   }
     46 }
     47 layer {
     48   bottom: "data"
     49   top: "conv1_1"
     50   name: "conv1_1"
     51   type: "Convolution"
     52   param {
     53     lr_mult: 1
     54     decay_mult: 1
     55   }
     56   param {
     57     lr_mult: 2
     58     decay_mult: 0
     59   }
     60   convolution_param {
     61     num_output: 64
     62     pad: 1
     63     kernel_size: 3
     64     weight_filler {
     65       type: "gaussian"
     66       std: 0.01
     67     }
     68     bias_filler {
     69       type: "constant"
     70       value: 0
     71     }
     72   }
     73 }
     74 layer {
     75   bottom: "conv1_1"
     76   top: "conv1_1"
     77   name: "relu1_1"
     78   type: "ReLU"
     79 }
     80 layer {
     81   bottom: "conv1_1"
     82   top: "conv1_2"
     83   name: "conv1_2"
     84   type: "Convolution"
     85   param {
     86     lr_mult: 1
     87     decay_mult: 1
     88   }
     89   param {
     90     lr_mult: 2
     91     decay_mult: 0
     92   }
     93   convolution_param {
     94     num_output: 64
     95     pad: 1
     96     kernel_size: 3
     97     weight_filler {
     98       type: "gaussian"
     99       std: 0.01
    100     }
    101     bias_filler {
    102       type: "constant"
    103       value: 0
    104     }
    105   }
    106 }
    107 layer {
    108   bottom: "conv1_2"
    109   top: "conv1_2"
    110   name: "relu1_2"
    111   type: "ReLU"
    112 }
    113 layer {
    114   bottom: "conv1_2"
    115   top: "pool1"
    116   name: "pool1"
    117   type: "Pooling"
    118   pooling_param {
    119     pool: MAX
    120     kernel_size: 2
    121     stride: 2
    122   }
    123 }
    124 layer {
    125   bottom: "pool1"
    126   top: "conv2_1"
    127   name: "conv2_1"
    128   type: "Convolution"
    129   param {
    130     lr_mult: 1
    131     decay_mult: 1
    132   }
    133   param {
    134     lr_mult: 2
    135     decay_mult: 0
    136   }
    137   convolution_param {
    138     num_output: 128
    139     pad: 1
    140     kernel_size: 3
    141     weight_filler {
    142       type: "gaussian"
    143       std: 0.01
    144     }
    145     bias_filler {
    146       type: "constant"
    147       value: 0
    148     }
    149   }
    150 }
    151 layer {
    152   bottom: "conv2_1"
    153   top: "conv2_1"
    154   name: "relu2_1"
    155   type: "ReLU"
    156 }
    157 layer {
    158   bottom: "conv2_1"
    159   top: "conv2_2"
    160   name: "conv2_2"
    161   type: "Convolution"
    162   param {
    163     lr_mult: 1
    164     decay_mult: 1
    165   }
    166   param {
    167     lr_mult: 2
    168     decay_mult: 0
    169   }
    170   convolution_param {
    171     num_output: 128
    172     pad: 1
    173     kernel_size: 3
    174     weight_filler {
    175       type: "gaussian"
    176       std: 0.01
    177     }
    178     bias_filler {
    179       type: "constant"
    180       value: 0
    181     }
    182   }
    183 }
    184 layer {
    185   bottom: "conv2_2"
    186   top: "conv2_2"
    187   name: "relu2_2"
    188   type: "ReLU"
    189 }
    190 layer {
    191   bottom: "conv2_2"
    192   top: "pool2"
    193   name: "pool2"
    194   type: "Pooling"
    195   pooling_param {
    196     pool: MAX
    197     kernel_size: 2
    198     stride: 2
    199   }
    200 }
    201 layer {
    202   bottom: "pool2"
    203   top: "conv3_1"
    204   name: "conv3_1"
    205   type: "Convolution"
    206   param {
    207     lr_mult: 1
    208     decay_mult: 1
    209   }
    210   param {
    211     lr_mult: 2
    212     decay_mult: 0
    213   }
    214   convolution_param {
    215     num_output: 256
    216     pad: 1
    217     kernel_size: 3
    218     weight_filler {
    219       type: "gaussian"
    220       std: 0.01
    221     }
    222     bias_filler {
    223       type: "constant"
    224       value: 0
    225     }
    226   }
    227 }
    228 layer {
    229   bottom: "conv3_1"
    230   top: "conv3_1"
    231   name: "relu3_1"
    232   type: "ReLU"
    233 }
    234 layer {
    235   bottom: "conv3_1"
    236   top: "conv3_2"
    237   name: "conv3_2"
    238   type: "Convolution"
    239   param {
    240     lr_mult: 1
    241     decay_mult: 1
    242   }
    243   param {
    244     lr_mult: 2
    245     decay_mult: 0
    246   }
    247   convolution_param {
    248     num_output: 256
    249     pad: 1
    250     kernel_size: 3
    251     weight_filler {
    252       type: "gaussian"
    253       std: 0.01
    254     }
    255     bias_filler {
    256       type: "constant"
    257       value: 0
    258     }
    259   }
    260 }
    261 layer {
    262   bottom: "conv3_2"
    263   top: "conv3_2"
    264   name: "relu3_2"
    265   type: "ReLU"
    266 }
    267 layer {
    268   bottom: "conv3_2"
    269   top: "conv3_3"
    270   name: "conv3_3"
    271   type: "Convolution"
    272   param {
    273     lr_mult: 1
    274     decay_mult: 1
    275   }
    276   param {
    277     lr_mult: 2
    278     decay_mult: 0
    279   }
    280   convolution_param {
    281     num_output: 256
    282     pad: 1
    283     kernel_size: 3
    284     weight_filler {
    285       type: "gaussian"
    286       std: 0.01
    287     }
    288     bias_filler {
    289       type: "constant"
    290       value: 0
    291     }
    292   }
    293 }
    294 layer {
    295   bottom: "conv3_3"
    296   top: "conv3_3"
    297   name: "relu3_3"
    298   type: "ReLU"
    299 }
    300 layer {
    301   bottom: "conv3_3"
    302   top: "pool3"
    303   name: "pool3"
    304   type: "Pooling"
    305   pooling_param {
    306     pool: MAX
    307     kernel_size: 2
    308     stride: 2
    309   }
    310 }
    311 layer {
    312   bottom: "pool3"
    313   top: "conv4_1"
    314   name: "conv4_1"
    315   type: "Convolution"
    316   param {
    317     lr_mult: 1
    318     decay_mult: 1
    319   }
    320   param {
    321     lr_mult: 2
    322     decay_mult: 0
    323   }
    324   convolution_param {
    325     num_output: 512
    326     pad: 1
    327     kernel_size: 3
    328     weight_filler {
    329       type: "gaussian"
    330       std: 0.01
    331     }
    332     bias_filler {
    333       type: "constant"
    334       value: 0
    335     }
    336   }
    337 }
    338 layer {
    339   bottom: "conv4_1"
    340   top: "conv4_1"
    341   name: "relu4_1"
    342   type: "ReLU"
    343 }
    344 layer {
    345   bottom: "conv4_1"
    346   top: "conv4_2"
    347   name: "conv4_2"
    348   type: "Convolution"
    349   param {
    350     lr_mult: 1
    351     decay_mult: 1
    352   }
    353   param {
    354     lr_mult: 2
    355     decay_mult: 0
    356   }
    357   convolution_param {
    358     num_output: 512
    359     pad: 1
    360     kernel_size: 3
    361     weight_filler {
    362       type: "gaussian"
    363       std: 0.01
    364     }
    365     bias_filler {
    366       type: "constant"
    367       value: 0
    368     }
    369   }
    370 }
    371 layer {
    372   bottom: "conv4_2"
    373   top: "conv4_2"
    374   name: "relu4_2"
    375   type: "ReLU"
    376 }
    377 layer {
    378   bottom: "conv4_2"
    379   top: "conv4_3"
    380   name: "conv4_3"
    381   type: "Convolution"
    382   param {
    383     lr_mult: 1
    384     decay_mult: 1
    385   }
    386   param {
    387     lr_mult: 2
    388     decay_mult: 0
    389   }
    390   convolution_param {
    391     num_output: 512
    392     pad: 1
    393     kernel_size: 3
    394     weight_filler {
    395       type: "gaussian"
    396       std: 0.01
    397     }
    398     bias_filler {
    399       type: "constant"
    400       value: 0
    401     }
    402   }
    403 }
    404 layer {
    405   bottom: "conv4_3"
    406   top: "conv4_3"
    407   name: "relu4_3"
    408   type: "ReLU"
    409 }
    410 layer {
    411   bottom: "conv4_3"
    412   top: "pool4"
    413   name: "pool4"
    414   type: "Pooling"
    415   pooling_param {
    416     pool: MAX
    417     kernel_size: 2
    418     stride: 2
    419   }
    420 }
    421 layer {
    422   bottom: "pool4"
    423   top: "conv5_1"
    424   name: "conv5_1"
    425   type: "Convolution"
    426   param {
    427     lr_mult: 1
    428     decay_mult: 1
    429   }
    430   param {
    431     lr_mult: 2
    432     decay_mult: 0
    433   }
    434   convolution_param {
    435     num_output: 512
    436     pad: 1
    437     kernel_size: 3
    438     weight_filler {
    439       type: "gaussian"
    440       std: 0.01
    441     }
    442     bias_filler {
    443       type: "constant"
    444       value: 0
    445     }
    446   }
    447 }
    448 layer {
    449   bottom: "conv5_1"
    450   top: "conv5_1"
    451   name: "relu5_1"
    452   type: "ReLU"
    453 }
    454 layer {
    455   bottom: "conv5_1"
    456   top: "conv5_2"
    457   name: "conv5_2"
    458   type: "Convolution"
    459   param {
    460     lr_mult: 1
    461     decay_mult: 1
    462   }
    463   param {
    464     lr_mult: 2
    465     decay_mult: 0
    466   }
    467   convolution_param {
    468     num_output: 512
    469     pad: 1
    470     kernel_size: 3
    471     weight_filler {
    472       type: "gaussian"
    473       std: 0.01
    474     }
    475     bias_filler {
    476       type: "constant"
    477       value: 0
    478     }
    479   }
    480 }
    481 layer {
    482   bottom: "conv5_2"
    483   top: "conv5_2"
    484   name: "relu5_2"
    485   type: "ReLU"
    486 }
    487 layer {
    488   bottom: "conv5_2"
    489   top: "conv5_3"
    490   name: "conv5_3"
    491   type: "Convolution"
    492   param {
    493     lr_mult: 1
    494     decay_mult: 1
    495   }
    496   param {
    497     lr_mult: 2
    498     decay_mult: 0
    499   }
    500   convolution_param {
    501     num_output: 512
    502     pad: 1
    503     kernel_size: 3
    504     weight_filler {
    505       type: "gaussian"
    506       std: 0.01
    507     }
    508     bias_filler {
    509       type: "constant"
    510       value: 0
    511     }
    512   }
    513 }
    514 layer {
    515   bottom: "conv5_3"
    516   top: "conv5_3"
    517   name: "relu5_3"
    518   type: "ReLU"
    519 }
    520 layer {
    521   bottom: "conv5_3"
    522   top: "pool5"
    523   name: "pool5"
    524   type: "Pooling"
    525   pooling_param {
    526     pool: MAX
    527     kernel_size: 2
    528     stride: 2
    529   }
    530 }
    531 layer {
    532   bottom: "pool5"
    533   top: "fc6"
    534   name: "fc6"
    535   type: "InnerProduct"
    536   param {
    537     lr_mult: 1
    538     decay_mult: 1
    539   }
    540   param {
    541     lr_mult: 2
    542     decay_mult: 0
    543   }
    544   inner_product_param {
    545     num_output: 4096
    546     weight_filler {
    547       type: "gaussian"
    548       std: 0.005
    549     }
    550     bias_filler {
    551       type: "constant"
    552       value: 0.1
    553     }
    554   }
    555 }
    556 layer {
    557   bottom: "fc6"
    558   top: "fc6"
    559   name: "relu6"
    560   type: "ReLU"
    561 }
    562 layer {
    563   bottom: "fc6"
    564   top: "fc6"
    565   name: "drop6"
    566   type: "Dropout"
    567   dropout_param {
    568     dropout_ratio: 0.5
    569   }
    570 }
    571 layer {
    572   bottom: "fc6"
    573   top: "fc7"
    574   name: "fc7"
    575   type: "InnerProduct"
    576   param {
    577     lr_mult: 1
    578     decay_mult: 1
    579   }
    580   param {
    581     lr_mult: 2
    582     decay_mult: 0
    583   }
    584   inner_product_param {
    585     num_output: 4096
    586     weight_filler {
    587       type: "gaussian"
    588       std: 0.005
    589     }
    590     bias_filler {
    591       type: "constant"
    592       value: 0.1
    593     }
    594   }
    595 }
    596 layer {
    597   bottom: "fc7"
    598   top: "fc7"
    599   name: "relu7"
    600   type: "ReLU"
    601 }
    602 layer {
    603   bottom: "fc7"
    604   top: "fc7"
    605   name: "drop7"
    606   type: "Dropout"
    607   dropout_param {
    608     dropout_ratio: 0.5
    609   }
    610 }
    611 layer {
    612   bottom: "fc7"
    613   top: "fc8"
    614   name: "cellfc8"
    615   type: "InnerProduct"
    616   param {
    617     lr_mult: 1
    618     decay_mult: 1
    619   }
    620   param {
    621     lr_mult: 2
    622     decay_mult: 0
    623   }
    624   inner_product_param {
    625     num_output: 7 #改为自己的类别数
    626     weight_filler {
    627       type: "gaussian"
    628       std: 0.005
    629     }
    630     bias_filler {
    631       type: "constant"
    632       value: 0.1
    633     }
    634   }
    635 }
    636 layer {
    637   name: "accuracy_at_1"
    638   type: "Accuracy"
    639   bottom: "fc8"
    640   bottom: "label"
    641   top: "accuracy_at_1"
    642   accuracy_param {
    643     top_k: 1
    644   }
    645   include {
    646     phase: TEST
    647   }
    648 }
    649 layer {
    650   name: "accuracy_at_5"
    651   type: "Accuracy"
    652   bottom: "fc8"
    653   bottom: "label"
    654   top: "accuracy_at_5"
    655   accuracy_param {
    656     top_k: 5
    657   }
    658   include {
    659     phase: TEST
    660   }
    661 }
    662 layer {
    663   bottom: "fc8"
    664   bottom: "label"
    665   top: "loss"
    666   name: "loss"
    667   type: "SoftmaxWithLoss"
    668 }

    如果使用LMDB数据库形式,将前面的数据层改为:

     1 name: "vgg"
     2 layer {
     3   name: "data"
     4   type: "Data"
     5   top: "data"
     6   top: "label"
     7   include {
     8     phase: TRAIN
     9   }
    10   transform_param {
    11     mirror: true
    12     crop_size: 224
    13 #如果图片大于224,则使用crop的方式,小于则使用下面的new_height和new_width
    14    # new_height: 224
    15     #new_ 224
    16     mean_file: "vggface/face_mean.binaryproto"
    17   }
    18   data_param {
    19     source: "vggface/face_train_lmdb"
    20     batch_size: 20
    21     backend: LMDB
    22   }
    23 }
    24 layer {
    25   name: "data"
    26   type: "Data"
    27   top: "data"
    28   top: "label"
    29   include {
    30     phase: TEST
    31   }
    32   transform_param {
    33     mirror: false
    34     crop_size: 224
    35 #如果图片大于224,则使用crop的方式,小于则使用下面的new_height和new_width
    36    # new_height: 224
    37     #new_ 224
    38     mean_file: "vggface/face_mean.binaryproto"
    39   }
    40   data_param {
    41     source: "vggface/face_val_lmdb"
    42     batch_size: 20
    43     backend: LMDB
    44   }
    45 }

    训练

    放一个shell命令:

    #!/usr/bin/env sh
    
    TOOLS=/home/dl/caffe-jonlong/build/tools
    
    $TOOLS/caffe train 
      -solver=/media/dl/source/Experiment/cell/test/vgg/solver.prototxt 
      -weights=/media/dl/source/Experiment/cell/test/vgg/VGG_ILSVRC_16_layers.caffemodel 
      -gpu=all 

    预训练模型VGG_ILSVRC_16_layers.caffemodel的下载地址为

     http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel 
  • 相关阅读:
    什么是架构
    intellij idea新建maven项目,一直loading archetype list.....
    maven使用出现的错误
    mock使用中出现的错误
    9个最好用的在线编译/调试工具
    Junit测试中找不到junit.framework.testcase
    mysql图形化界面MySQL_Workbench
    win7下mysql免安装版使用
    qemu安装
    逻辑卷管理
  • 原文地址:https://www.cnblogs.com/go-better/p/9053973.html
Copyright © 2011-2022 走看看