zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence(lcs)

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 38003    Accepted Submission(s): 17422


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab programming contest abcd mnp
     
    Sample Output
    4 2 0
     
    最长公共子序列
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 const int MAXN = 512;
     7 int dp[MAXN][MAXN];
     8 
     9 int main()
    10 {
    11     char s1[MAXN], s2[MAXN];
    12 
    13     int i, j;
    14     int len1, len2;
    15 
    16     while (~scanf("%s%s", s1 + 1, s2 + 1)) {
    17         len1 = strlen(s1 + 1);
    18         len2 = strlen(s2 + 1);
    19         memset(dp, 0, sizeof(dp));
    20 
    21         for (i = 1; i <= len1; ++i) {
    22             for (j = 1; j <= len2; ++j) {
    23                 if (s1[i] == s2[j]) {
    24                     dp[i][j] = dp[i - 1][j - 1] + 1;
    25                 } else {
    26                     dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    27                 }
    28             }
    29         }
    30 
    31         printf("%d
    ", dp[len1][len2]);
    32     }
    33 
    34     return 0;
    35 }
  • 相关阅读:
    虚拟化之kvm与xen对比
    Java实现第九届蓝桥杯小朋友崇拜圈
    Java实现第九届蓝桥杯小朋友崇拜圈
    Java实现第九届蓝桥杯小朋友崇拜圈
    Java实现第九届蓝桥杯小朋友崇拜圈
    Java实现第九届蓝桥杯小朋友崇拜圈
    Java实现第九届蓝桥杯等腰三角形
    Java实现第九届蓝桥杯等腰三角形
    Java实现第九届蓝桥杯等腰三角形
    Java实现第九届蓝桥杯等腰三角形
  • 原文地址:https://www.cnblogs.com/gongpixin/p/6739227.html
Copyright © 2011-2022 走看看