zoukankan      html  css  js  c++  java
  • HDUOJ---hello Kiki

    Hello Kiki

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1717    Accepted Submission(s): 599

    Problem Description
    One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again... Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note. One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
     
    Input
    The first line is T indicating the number of test cases. Each case contains N on the first line, Mi(1 <= i <= N) on the second line, and corresponding Ai(1 <= i <= N) on the third line. All numbers in the input and output are integers. 1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < Mi
     
    Output
    For each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1.
     
    Sample Input
    2
    2
    14 57
    5 56
    5
    19 54 40 24 80
    11 2 36 20 76
     
    Sample Output
    Case 1: 341
    Case 2: 5996
     
    Author
    digiter (Special Thanks echo)
     
    Source
     
    Recommend
    zhouzeyong
    中国剩余定理:
    该题典型的同余方程组X=amod(M)求解,需要注意的是,题目要求最小的的整数解,所以如果解为0是,他们的最小解为他们的最小公倍数..lcm
    代码:
     1 #include<iostream>
     2 #include<cstdio>
     3 #define LL _int64   //long long
     4 using namespace std;
     5   LL x,y,q;
     6  LL gcd(LL a,LL b)
     7  {
     8      if(b==0)
     9          return gcd(b,a%b);
    10      else     
    11          return a;
    12  }
    13   
    14  void  exgcd( LL a, LL b)
    15   {
    16       if(b==0)
    17       x=1,y=0,q=a;
    18       else
    19       {
    20           exgcd(b,a%b);
    21           LL temp=x;
    22          x=y,y=temp-a/b*y;
    23       }
    24   }
    25 
    26  int main()
    27  {
    28      int ncase,n,i,j;
    29      LL lcm,aa[10],rr[10];
    30      bool  ifhave;
    31     // freopen("test.in","r",stdin);
    32      //freopen("test.out","w",stdout);
    33      scanf("%d",&ncase);
    34      for(j=1;j<=ncase;j++)
    35      {    
    36        scanf("%d",&n);
    37        lcm=1;
    38        ifhave=true;
    39        for(i=0;i<n;i++)
    40        {
    41            scanf("%I64d",&aa[i]);
    42            lcm=lcm/gcd(lcm,aa[i])*aa[i];
    43        }
    44        for(i=0;i<n;i++)
    45            scanf("%I64d",&rr[i]);
    46        for(i=1;i<n;i++)
    47        {
    48           exgcd(aa[0],aa[i]);
    49           if((rr[i]-rr[0])%q)
    50           {
    51             ifhave=false;
    52             break;
    53           }
    54           int t=aa[i]/q;
    55            x=(x*((rr[i]-rr[0])/q)%t+t)%t;
    56            rr[0]+=x*aa[0];
    57            aa[0]*=(aa[i]/q);
    58        }
    59        printf("Case %d: ",j);
    60        if(!ifhave)
    61        {
    62            printf("-1
    ");
    63        }
    64        else
    65        {
    66            if(rr[0]!=0)
    67            printf("%I64d
    ",rr[0]);
    68            else
    69             printf("%I64d
    ",lcm);
    70        }
    71      }
    72   return 0;
    73  }
    复制代码
     
  • 相关阅读:
    java基础知识回顾之java Thread类学习(三)--java线程实现常见的两种方式实现好处:
    java基础知识回顾之java Thread类--java线程实现常见的两种方式实现Runnable接口(二)
    java基础知识回顾之java Thread类--java线程实现常见的两种方式(一)
    java基础知识回顾之javaIO类--RandomAccessFile类
    java基础知识回顾之javaIO类--java序列化和反序列化
    X明X源面试题《三》
    X明X源面试题《二》
    SqlServer查询计划
    X明X源面试题《一》
    索引笔记《二》确定需要建立索引的列
  • 原文地址:https://www.cnblogs.com/gongxijun/p/3306152.html
Copyright © 2011-2022 走看看