Greatest Common Increasing Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3460 Accepted Submission(s): 1092
Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1 5 1 4 2 5 -12 4 -12 1 2 4
Sample Output
2
Source
代码:动态规划求最长增长公共序列 下面展示的是压缩空间的lcs,由于不需要记录顺序,所以这样写,较为简便,如果要记录路径只需要将lcs[]--->换成lcs[][],
然后maxc,变为lcs[][]的上一行即可!
1 //增长lcs algorithm 2 #include<stdio.h> 3 #include<string.h> 4 #define maxn 505 5 int aa[maxn],bb[maxn]; 6 int lcs[maxn]; 7 int main() 8 { 9 int test,na,nb,i,j,maxc,res; 10 scanf("%d",&test); 11 while(test--) 12 { 13 scanf("%d",&na); 14 for(i=1;i<=na;i++) 15 scanf("%d",aa+i); 16 scanf("%d",&nb); 17 for(j=1;j<=nb;j++) 18 scanf("%d",bb+j); 19 memset(lcs,0,sizeof(lcs)); 20 for(i=1;i<=na;i++) 21 { 22 maxc=0; 23 for(j=1;j<=nb;j++) 24 { 25 if(aa[i]==bb[j]&&lcs[j]<maxc+1) 26 lcs[j]=maxc+1; 27 if(aa[i]>bb[j]&&maxc<lcs[j]) 28 maxc=lcs[j]; 29 } 30 } 31 res=0; 32 for(i=1;i<=nb;i++) 33 if(res<lcs[i])res=lcs[i]; 34 printf("%d ",res); 35 if(test) putchar(10); 36 } 37 return 0; 38 }