zoukankan      html  css  js  c++  java
  • python爬虫多次请求超时的几种重试方法

    第一种方法

    headers = Dict()
    url = 'https://www.baidu.com'
    try:
        proxies = None
        response = requests.get(url, headers=headers, verify=False, proxies=None, timeout=3)
    except:
        # logdebug('requests failed one time')
        try:
            proxies = None
            response = requests.get(url, headers=headers, verify=False, proxies=None, timeout=3)
        except:
            # logdebug('requests failed two time')
            print('requests failed two time')
    

    总结 :代码比较冗余,重试try的次数越多,代码行数越多,但是打印日志比较方便

    第二种方法

    def requestDemo(url,):
    	headers = Dict()
    	trytimes = 3  #  重试的次数
    	for i in range(trytimes):
    		try:
    		    proxies = None
    		    response = requests.get(url, headers=headers, verify=False, proxies=None, timeout=3)
    		    #	注意此处也可能是302等状态码
    		    if response.status_code == 200:
    		    	break
    		except:
    	    	# logdebug(f'requests failed {i}time')
            	print(f'requests failed {i} time')
    

    总结 :遍历代码明显比第一个简化了很多,打印日志也方便

    第三种方法

    def requestDemo(url, times=1):
    	headers = Dict()
    	try:
    	    proxies = None
    	    response = requests.get(url, headers=headers, verify=False, proxies=None, timeout=3)
    	    html = response.text()
    	    #	todo  此处处理代码正常逻辑
    	    pass
    	    return html
    	except:
        	# logdebug(f'requests failed {i}time')
        	trytimes = 3  #  重试的次数
        	if times < trytimes:
        		times += 1
           		return requestDemo(url, times)
           	return 'out of maxtimes'
    

    总结 :迭代 显得比较高大上,中间处理代码时有其它错误照样可以进行重试; 缺点 不太好理解,容易出错,另外try包含的内容过多时,对代码运行速度不利。

    第四种方法

    @retry(3)	#	重试的次数 3
    def requestDemo(url):
    	headers = Dict()
        proxies = None
        response = requests.get(url, headers=headers, verify=False, proxies=None, timeout=3)
        html = response.text()
        #	todo  此处处理代码正常逻辑
        pass
        return html
       
    def retry(times):
        def wrapper(func):
            def inner_wrapper(*args, **kwargs):
                i = 0
                while i < times:
                    try:
                        print(i)
                        return func(*args, **kwargs)
                    except:
                    	#	此处打印日志  func.__name__ 为say函数
                        print("logdebug: {}()".format(func.__name__))
                        i += 1
            return inner_wrapper
        return wrapper
    

    总结 :装饰器优点 多种函数复用,使用十分方便

    第五种方法

    #!/usr/bin/python
    # -*-coding='utf-8' -*-
    import requests
    import time
    import json
    from lxml import etree
    import warnings
    warnings.filterwarnings("ignore")
    
    
    
    
    
    def get_xiaomi():
        try:
            # for n in range(5):  # 重试5次
            #     print("第"+str(n)+"次")
            for a in range(5): # 重试5次
                print(a)
                url = "https://www.mi.com/"
                headers = {
                    "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3",
                    "Accept-Encoding": "gzip, deflate, br",
                    "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8",
                    "Connection": "keep-alive",
                    # "Cookie": "xmuuid=XMGUEST-D80D9CE0-910B-11EA-8EE0-3131E8FF9940; Hm_lvt_c3e3e8b3ea48955284516b186acf0f4e=1588929065; XM_agreement=0; pageid=81190ccc4d52f577; lastsource=www.baidu.com; mstuid=1588929065187_5718; log_code=81190ccc4d52f577-e0f893c4337cbe4d|https%3A%2F%2Fwww.mi.com%2F; Hm_lpvt_c3e3e8b3ea48955284516b186acf0f4e=1588929099; mstz=||1156285732.7|||; xm_vistor=1588929065187_5718_1588929065187-1588929100964",
                    "Host": "www.mi.com",
                    "Upgrade-Insecure-Requests": "1",
                    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.90 Safari/537.36"
                }
                response = requests.get(url,headers=headers,timeout=10,verify=False)
                html = etree.HTML(response.text)
                # print(html)
                result = etree.tostring(html)
                # print(result)
                print(result.decode("utf-8"))
                title = html.xpath('//head/title/text()')[0]
                print("title==",title)
                if "左左" in title:
                # print(response.status_code)
                # if response.status_code ==200:
                    break
            return title
    
        except:
            result = "异常"
            return result
    
    if __name__ == '__main__':
        print(get_xiaomi())
    

    第六种方法

    Python重试模块retrying

    # 设置最大重试次数
    @retry(stop_max_attempt_number=5)
    def get_proxies(self):
        r = requests.get('代理地址')
        print('正在获取')
        raise Exception("异常")
        print('获取到最新代理 = %s' % r.text)
        params = dict()
        if r and r.status_code == 200:
            proxy = str(r.content, encoding='utf-8')
            params['http'] = 'http://' + proxy
            params['https'] = 'https://' + proxy
    
    # 设置方法的最大延迟时间,默认为100毫秒(是执行这个方法重试的总时间)
    @retry(stop_max_attempt_number=5,stop_max_delay=50)
    # 通过设置为50,我们会发现,任务并没有执行5次才结束!
    
    # 添加每次方法执行之间的等待时间
    @retry(stop_max_attempt_number=5,wait_fixed=2000)
    # 随机的等待时间
    @retry(stop_max_attempt_number=5,wait_random_min=100,wait_random_max=2000)
    # 每调用一次增加固定时长
    @retry(stop_max_attempt_number=5,wait_incrementing_increment=1000)
    
    # 根据异常重试,先看个简单的例子
    def retry_if_io_error(exception):
        return isinstance(exception, IOError)
    
    @retry(retry_on_exception=retry_if_io_error)
    def read_a_file():
        with open("file", "r") as f:
            return f.read()
    

    read_a_file函数如果抛出了异常,会去retry_on_exception指向的函数去判断返回的是True还是False,如果是True则运行指定的重试次数后,抛出异常,False的话直接抛出异常。
    当时自己测试的时候网上一大堆抄来抄去的,意思是retry_on_exception指定一个函数,函数返回指定异常,会重试,不是异常会退出。真坑人啊!
    来看看获取代理的应用(仅仅是为了测试retrying模块)

  • 相关阅读:
    Door Frames CodeForces
    POJ 3090 Visible Lattice Points (ZOJ 2777)
    从斐波那契到矩阵快速幂
    Recursive sequence (矩阵快速幂)2016ACM/ICPC亚洲区沈阳站
    c++ 类实现 AVL树容器(包含迭代器)
    c++ 链表类的实现(包含迭代器)
    HDU
    【几何+模拟】二次元变换 计蒜客
    【bfs+链式向前星】防御僵尸(defend)计蒜客
    deque in Python
  • 原文地址:https://www.cnblogs.com/gqv2009/p/12853865.html
Copyright © 2011-2022 走看看