Given an integer array nums
, return the number of range sums that lie in [lower, upper]
inclusive.
Range sum S(i, j)
is defined as the sum of the elements in nums
between indices i
and j
(i
≤ j
), inclusive.
Note:
A naive algorithm of O(n2) is trivial. You MUST do better than that.
Example:
Input: nums =[-2,5,-1]
, lower =-2
, upper =2
, Output: 3 Explanation: The three ranges are :[0,0]
,[2,2]
,[0,2]
and their respective sums are:-2, -1, 2
.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
这道题给了我们一个数组,又给了一个下限和一个上限,让求有多少个不同的区间使得每个区间的和在给定的上下限之间。这道题的难度系数给的是 Hard,的确是一道难度不小的题,题目中也说了 Brute Force 的方法太 Naive 了,只能另想方法了。To be honest,这题超出了博主的能力范围,所以博主也没挣扎了,直接上网搜大神们的解法啦。首先根据前面的那几道类似题 Range Sum Query - Mutable,Range Sum Query 2D - Immutable 和 Range Sum Query - Immutable 的解法可知类似的区间和的问题一定是要计算累积和数组 sums 的,其中 sum[i] = nums[0] + nums[1] + ... + nums[i],对于某个i来说,只有那些满足 lower <= sum[i] - sum[j] <= upper 的j能形成一个区间 [j, i] 满足题意,目标就是来找到有多少个这样的 j (0 =< j < i) 满足 sum[i] - upper =< sum[j] <= sum[i] - lower,可以用 C++ 中由红黑树实现的 multiset 数据结构可以对其中数据排序,然后用 upperbound 和 lowerbound 来找临界值。lower_bound 是找数组中第一个不小于给定值的数(包括等于情况),而 upper_bound 是找数组中第一个大于给定值的数,那么两者相减,就是j的个数,参见代码如下:
解法一:
class Solution { public: int countRangeSum(vector<int>& nums, int lower, int upper) { int res = 0; long long sum = 0; multiset<long long> sums; sums.insert(0); for (int i = 0; i < nums.size(); ++i) { sum += nums[i]; res += distance(sums.lower_bound(sum - upper), sums.upper_bound(sum - lower)); sums.insert(sum); } return res; } };
我们再来看一种方法,这种方法的思路和前一种一样,只是没有 STL 的 multiset 和 lower_bound 和 upper_bound 函数,而是使用了 Merge Sort 来解,在混合的过程中,已经给左半边 [start, mid) 和右半边 [mid, end) 排序了。当遍历左半边,对于每个i,需要在右半边找出k和j,使其满足:
j是第一个满足 sums[j] - sums[i] > upper 的下标
k是第一个满足 sums[k] - sums[i] >= lower 的下标
那么在 [lower, upper] 之间的区间的个数是 j - k,同时也需要另一个下标t,用来拷贝所有满足 sums[t] < sums[i] 到一个寄存器 Cache 中以完成混合排序的过程,这个步骤是混合排序的精髓所在,实际上这个寄存器的作用就是将 [start, end) 范围内的数字排好序先存到寄存器中,然后再覆盖原数组对应的位置即可,(注意这里 sums 可能会整型溢出,使用长整型 long 代替),参见代码如下:
解法二:
class Solution { public: int countRangeSum(vector<int>& nums, int lower, int upper) { vector<long> sums(nums.size() + 1, 0); for (int i = 0; i < nums.size(); ++i) { sums[i + 1] = sums[i] + nums[i]; } return countAndMergeSort(sums, 0, sums.size(), lower, upper); } int countAndMergeSort(vector<long>& sums, int start, int end, int lower, int upper) { if (end - start <= 1) return 0; int mid = start + (end - start) / 2; int cnt = countAndMergeSort(sums, start, mid, lower, upper) + countAndMergeSort(sums, mid, end, lower, upper); int j = mid, k = mid, t = mid; vector<int> cache(end - start, 0); for (int i = start, r = 0; i < mid; ++i, ++r) { while (k < end && sums[k] - sums[i] < lower) ++k; while (j < end && sums[j] - sums[i] <= upper) ++j; while (t < end && sums[t] < sums[i]) cache[r++] = sums[t++]; cache[r] = sums[i]; cnt += j - k; } copy(cache.begin(), cache.begin() + t - start, sums.begin() + start); return cnt; } };
Github 同步地址:
https://github.com/grandyang/leetcode/issues/327
类似题目:
Range Sum Query 2D - Immutable
Count of Smaller Numbers After Self
参考资料:
https://leetcode.com/problems/count-of-range-sum/
https://leetcode.com/problems/count-of-range-sum/discuss/77990/Share-my-solution