zoukankan      html  css  js  c++  java
  • BackTracking_Fixed sum for array elements

    Given an array a contains distinct positive integers, count how many combinations of integers in a add up to exactly sum

    For example, given int[] a = {11, 3, 8} ; and sum = 11

    You should output 2, because 11 == 11 and 3 + 8 == 11

    This is typically a backtracking problem

    Enumerate all the subsets of the given array to see how many of them match the condition

    when you write backtracking procedure using recursion, please be careful of which condition do you

    use to terminate the loop, in this code snippet, there two conditions,

    1. sum == 0

    2. t == a.Length

    and when t == a.Length, we might be got an solution yet, don't forget this case.

    Backtracking

    Code

    recursive way

    Code

    C法

    #include<stdio.h>
    #include<stdlib.h>
    
    int count = 0; // number of solutions
    
    /*
     * array - positive numbers
     * n     - element count in array
     * sum   - pair of sum
     * t     - recursion deep
     */
    void find_combinations(int *array, int n, int sum, int t) {
        if (t == n) {
            if (sum == 0) {
                count++;
            }
            return;
        }
    
        if (sum == 0) { // Find a solution
            count++;
        }
        else {
            if (sum >= array[t]) {  // left tree
                find_combinations(array, n, sum - array[t], t + 1);
            }
            if (sum > 0) {                  // right tree
                find_combinations(array, n, sum, t + 1);
            }
        }
    }
    
    int main(void) {
        int a[] = {11, 3, 8, 4, 1, 7};
        find_combinations(a, 6, 11, 0);
        printf("%d\n", count);
    
        system("pause");
        return 0;
    }

    ==

     

  • 相关阅读:
    SQL Server, Timeout expired.all pooled connections were in use and max pool size was reached
    javascript 事件调用顺序
    Best Practices for Speeding Up Your Web Site
    C语言程序设计 使用VC6绿色版
    破解SQL Prompt 3.9的几步操作
    Master page Path (MasterPage 路径)
    几个小型数据库的比较
    CSS+DIV 完美实现垂直居中的方法
    由Response.Redirect引发的"Thread was being aborted. "异常的处理方法
    Adsutil.vbs 在脚本攻击中的妙用
  • 原文地址:https://www.cnblogs.com/graphics/p/1495466.html
Copyright © 2011-2022 走看看