CGAL - SourceCode - box_intersection_d源码阅读
目录
box_intersection_d
源代码入口:CGALox_intersection_d.h
关于该代码实现的相关论文阅读,可参见:https://www.cnblogs.com/grass-and-moon/p/13344913.html
很容易找到对应的入口函数,如下:
// file: CGALox_intersection_d.h
// Generic call with box traits parameter.
// - make all default parameters explicit overloads (workaround)
template< class RandomAccessIter1, class RandomAccessIter2,
class Callback, class BoxTraits >
void box_intersection_d(
RandomAccessIter1 begin1, RandomAccessIter1 end1,
RandomAccessIter2 begin2, RandomAccessIter2 end2,
Callback callback,
BoxTraits,
std::ptrdiff_t cutoff,
Box_intersection_d::Topology topology,
Box_intersection_d::Setting setting)
{
if (topology == Box_intersection_d::CLOSED) {
typedef Box_intersection_d::Predicate_traits_d<BoxTraits,true> Traits;
box_intersection_custom_predicates_d(begin1, end1, begin2, end2,
callback, Traits(), cutoff, setting);
} else {
typedef Box_intersection_d::Predicate_traits_d<BoxTraits,false> Traits;
box_intersection_custom_predicates_d(begin1, end1, begin2, end2,
callback, Traits(), cutoff, setting);
}
}
此处需要关注的是Box_intersection_d::Predicate_traits_d
,这个在后面的实现中会被用到。
Predicate_traits_d
代码实现如下(路径:CGALBox_intersection_dBox_traits_d.h
):
template< class BoxTraits, bool closed > // close 闭区间还是开区间
struct Predicate_traits_d : public BoxTraits {
typedef typename BoxTraits::Box_parameter Box_parameter;
typedef typename BoxTraits::NT NT;
template<bool b> struct Bool_t {};
static bool hi_greater(NT hi, NT val, Bool_t<true> ) { return hi >= val;}
static bool hi_greater(NT hi, NT val, Bool_t<false> ){ return hi > val;}
static bool hi_greater (NT hi, NT val) {
return hi_greater(hi,val, Bool_t<closed>());
}
// compare dim a b = islolesslo a b dim
class Compare :
public CGAL::cpp98::binary_function<Box_parameter,Box_parameter,bool>
{
int dim;
public:
Compare(int dim) : dim(dim) {}
/// 某个维度下,box a的最小坐标小于box b的最小坐标(相等的话,对id进行判断),则返回true
bool operator()(Box_parameter a, Box_parameter b) const {
return is_lo_less_lo(a,b,dim);
}
};
// loless val dim box = getlo box dim < val
class Lo_less : public CGAL::cpp98::unary_function<Box_parameter,bool> {
NT value;
int dim;
public:
Lo_less(NT value, int dim) : value(value), dim(dim) {}
/// box的最小坐标对应dim的值是不是比lo还小
bool operator() (Box_parameter box) const {
return BoxTraits::min_coord(box, dim) < value;
}
};
class Hi_greater : public CGAL::cpp98::unary_function<Box_parameter,bool> {
NT value;
int dim;
public:
Hi_greater(NT value, int dim) : value(value), dim(dim) {}
/// box的最大坐标对应dim的值是不是比hi还大
bool operator() (Box_parameter box) const {
return hi_greater( BoxTraits::max_coord(box, dim), value);
}
};
// spanning lo hi dim box = getlo box dim < lo && gethi box dim > hi
class Spanning : public CGAL::cpp98::unary_function<Box_parameter,bool> {
NT lo, hi;
int dim;
public:
Spanning(NT lo, NT hi, int dim) : lo(lo), hi(hi), dim(dim) {}
// returns true <=> box spans [lo,hi) in dimension dim
// 如果[lo, hi)在box的范围内,那么返回true
bool operator() (Box_parameter box) const {
return BoxTraits::min_coord(box,dim) < lo
&& BoxTraits::max_coord(box,dim) > hi;
}
};
static Compare compare_object(int dim) { return Compare(dim); }
static Lo_less lo_less_object(NT value, int dim) {
return Lo_less(value, dim);
}
static Hi_greater hi_greater_object(NT value, int dim) {
return Hi_greater( value, dim );
}
static Spanning spanning_object(NT lo, NT hi, int dim) {
return Spanning( lo, hi, dim );
}
/// 某个维度下,box a的最小坐标小于box b的最小坐标(相等的话,对id进行判断),则返回true
static bool is_lo_less_lo(Box_parameter a, Box_parameter b, int dim) {
return BoxTraits::min_coord(a,dim) < BoxTraits::min_coord(b,dim) ||
( BoxTraits::min_coord(a,dim) == BoxTraits::min_coord(b,dim) &&
BoxTraits::id(a) < BoxTraits::id(b) );
}
/// 某个维度下,box b的最大坐标,大于box a的最小坐标
static bool is_lo_less_hi(Box_parameter a, Box_parameter b, int dim) {
return hi_greater( BoxTraits::max_coord(b,dim),
BoxTraits::min_coord(a,dim));
}
/// 某个维度下,box a的最小坐标小于box b的最大坐标,box b的最小坐标小于box a的最大坐标,
/// 那么两个box在这个维度相交
static bool does_intersect (Box_parameter a, Box_parameter b, int dim) {
return is_lo_less_hi(a,b,dim) && is_lo_less_hi(b,a,dim);
}
/// 某个维度下,box a的最小坐标小于box b的最小坐标,box b的最小坐标,小于box a的最大坐标,
/// 那么box b的最小坐标位于box a内
static bool contains_lo_point(Box_parameter a, Box_parameter b, int dim) {
return is_lo_less_lo(a,b,dim) && is_lo_less_hi(b,a,dim);
}
};
box_intersection_custom_predicates_d
这部分代码和,
// Generic call with custom predicate traits parameter.
template< class RandomAccessIter1, class RandomAccessIter2,
class Callback, class BoxPredicateTraits >
void box_intersection_custom_predicates_d(
RandomAccessIter1 begin1, RandomAccessIter1 end1,
RandomAccessIter2 begin2, RandomAccessIter2 end2,
Callback callback,
BoxPredicateTraits traits,
std::ptrdiff_t cutoff = 10,
Box_intersection_d::Setting setting = Box_intersection_d::BIPARTITE)
{
typedef BoxPredicateTraits Traits;
typedef typename Traits::NT NT;
CGAL_assertion( Traits::dimension() > 0 );
const int dim = Traits::dimension() - 1;
const NT inf = Box_intersection_d::box_limits<NT>::inf(); // 定义负无穷大
const NT sup = Box_intersection_d::box_limits<NT>::sup(); // 定义正无穷大
Box_intersection_d::segment_tree(begin1, end1, begin2, end2,
inf, sup, callback, traits, cutoff, dim, true);
if(setting == Box_intersection_d::BIPARTITE)
Box_intersection_d::segment_tree(begin2, end2, begin1, end1,
inf, sup, callback, traits, cutoff, dim, false);
}
重点实现见:Box_intersection_d::segment_tree
和论文中的Hybrid
伪代码实现相对应。
segment_tree
先放上伪代码实现,如下,详细内容可参见:https://www.cnblogs.com/grass-and-moon/p/13344913.html
Algorithm Hybrid(I, P, lo, hi, d):
1. if I = null or P = null or hi <= lo then
return;
endif;
2. if d = 0 then
OneWayScan(I, P, 0);
endif;
3. if |I| < c or |P| < c then
ModifiedTwoWayScan(I, P, d);
endif;
4. Im = { i in I | [lo, hi) belong i};
Hybrid(Im, P, -infinity, +infinity, d-1);
Hybrid(P, Im, -infinity, +infinity, d-1);
5. mi = ApproxMedian(P);
6. Pl = {p in P | p < mi};
Il = {i in I - Im | i and [lo, mi)
e nul};
Hybrid(Il, Pl, lo, mi, d);
7. Pr = {p in P | p >= mi};
Ir = {i in I - Im | i and [mi, hi)
e nul};
Hybrid(Ir, Pr, mi, hi, d);
CGAL中的segment_tree的实现如下:
template< class RandomAccessIter1, class RandomAccessIter2,
class Callback, class T, class Predicate_traits >
void segment_tree( RandomAccessIter1 p_begin, RandomAccessIter1 p_end,
RandomAccessIter2 i_begin, RandomAccessIter2 i_end,
T lo, T hi,
Callback callback, Predicate_traits traits,
std::ptrdiff_t cutoff, int dim, bool in_order )
{
typedef typename Predicate_traits::Spanning Spanning;
typedef typename Predicate_traits::Lo_less Lo_less;
typedef typename Predicate_traits::Hi_greater Hi_greater;
const T inf = box_limits< T >::inf(); // 负无穷大
const T sup = box_limits< T >::sup(); // 正无穷大
// 遍历结束判断
if( p_begin == p_end || i_begin == i_end || lo >= hi )
return;
// 最后一个维度,采用one_way_scan算法实现
if( dim == 0 ) {
CGAL_BOX_INTERSECTION_DUMP( "dim = 0. scanning ... " << std::endl )
one_way_scan( p_begin, p_end, i_begin, i_end,
callback, traits, dim, in_order );
return;
}
// 当begin,end的距离小于某个值的时候,采用
// modified_two_way_scan实现
if( std::distance( p_begin, p_end ) < cutoff ||
std::distance( i_begin, i_end ) < cutoff )
{
CGAL_BOX_INTERSECTION_DUMP( "scanning ... " << std::endl )
modified_two_way_scan( p_begin, p_end, i_begin, i_end,
callback, traits, dim, in_order );
return;
}
// 如果查找过程中,segment interval [lo,hi)在一部分box的interval内
// 那么,需要在其他的维度进行判断;
// [i_begin, i_span_end) 包含[lo,hi)
// [i_span_end, i_end) : 不包含[lo,hi)
RandomAccessIter2 i_span_end = lo == inf || hi == sup ? i_begin :
std::partition( i_begin, i_end, Spanning( lo, hi, dim ) );
if( i_begin != i_span_end ) {
CGAL_BOX_INTERSECTION_DUMP( "checking spanning intervals ... "
<< std::endl )
// make two calls for roots of segment tree at next level.
segment_tree( p_begin, p_end, i_begin, i_span_end, inf, sup,
callback, traits, cutoff, dim - 1, in_order );
segment_tree( i_begin, i_span_end, p_begin, p_end, inf, sup,
callback, traits, cutoff, dim - 1, !in_order );
}
// 将点分割成两部分
T mi;
RandomAccessIter1 p_mid = split_points( p_begin, p_end, traits, dim, mi );
// 如果没有合适的p_mid位置了,那么执行modified_two_way_scan
if( p_mid == p_begin || p_mid == p_end ) {
CGAL_BOX_INTERSECTION_DUMP( "unable to split points! ")
//dump_points( p_begin, p_end, traits, dim );
CGAL_BOX_INTERSECTION_DUMP( "performing modified two_way_san ... "
<< std::endl )
modified_two_way_scan( p_begin, p_end, i_span_end, i_end,
callback, traits, dim, in_order );
return;
}
// 找到interval中的mid位置
RandomAccessIter2 i_mid;
// separate left intervals.
// left intervals have a low point strictly less than mi
// 重新将intervals分割成两部分,
// [i_span_end, i_mid): lo值小于mi
// [i_mid, i_end) lo值大于mi
i_mid = std::partition( i_span_end, i_end, Lo_less( mi, dim ) );
CGAL_BOX_INTERSECTION_DUMP("->left" << std::endl )
segment_tree( p_begin, p_mid, i_span_end, i_mid, lo, mi,
callback, traits, cutoff, dim, in_order );
// separate right intervals.
// right intervals have a high point strictly higher than mi
// 重新将intervals分割成两部分,
// [i_span_end, i_mid): hi值大于mi
// [i_mid, i_end): hi值小于mi
i_mid = std::partition( i_span_end, i_end, Hi_greater( mi, dim ) );
CGAL_BOX_INTERSECTION_DUMP("->right"<< std::endl )
segment_tree( p_mid, p_end, i_span_end, i_mid, mi, hi,
callback, traits, cutoff, dim, in_order );
}
此处segment_tree的实现,并不是按照传统方式,先构建segment_tree节点的数据结构,而是直接采用二分递归的方式实现的。基本的实现思路是:
- 对传递进来的两组box序列,一组box作为interval,一组box作为points,points中选择二分划分位置,然后对左边和右边采用递归处理的方式;
- 递归结束的条件,见上述代码中的注释;
接下来还需要介绍的函数有:one_way_scan,modified_two_way_scan,split_points。
one_way_scan
template< class RandomAccessIter1, class RandomAccessIter2,
class Callback, class Traits >
void one_way_scan( RandomAccessIter1 p_begin, RandomAccessIter1 p_end,
RandomAccessIter2 i_begin, RandomAccessIter2 i_end,
Callback callback, Traits, int last_dim,
bool in_order = true )
{
typedef typename Traits::Compare Compare;
/// 按照box的第0个维度最小坐标进行排序
std::sort( p_begin, p_end, Compare( 0 ) );
std::sort( i_begin, i_end, Compare( 0 ) );
// for each box viewed as interval i
for( RandomAccessIter2 i = i_begin; i != i_end; ++i ) {
// look for the first box b with i.min <= p.min
for( ; p_begin != p_end && Traits::is_lo_less_lo( *p_begin, *i, 0 );
++p_begin ) {}
// look for all boxes with p.min < i.max
// p的min在interval内部,那么interval的box和p的box就相交
for( RandomAccessIter1 p = p_begin;
p != p_end && Traits::is_lo_less_hi( *p, *i, 0 );
++p )
{
if( Traits::id( *p ) == Traits::id( *i ) )
continue;
// 当last_dim为0的时候,并不会进入这个循环
for( int dim = 1; dim <= last_dim; ++dim )
if( !Traits::does_intersect( *p, *i, dim ) )
goto no_intersection;
if( in_order )
callback( *p, *i );
else
callback( *i, *p );
no_intersection:
;
}
}
}
modified_two_way_scan
template< class RandomAccessIter1, class RandomAccessIter2,
class Callback, class Traits >
void modified_two_way_scan(
RandomAccessIter1 p_begin, RandomAccessIter1 p_end,
RandomAccessIter2 i_begin, RandomAccessIter2 i_end,
Callback callback, Traits, int last_dim,
bool in_order = true )
{
typedef typename Traits::Compare Compare;
/// 按照box的第0个维度最小坐标进行排序
std::sort( p_begin, p_end, Compare( 0 ) );
std::sort( i_begin, i_end, Compare( 0 ) );
// for each box viewed as interval
while( i_begin != i_end && p_begin != p_end ) {
// 如果第0个维度,i_begin的lo值比p_begin的lo值小
if( Traits::is_lo_less_lo( *i_begin, *p_begin, 0 ) ) {
// 对第0个维度,p的lo值小于i_begin的hi值小的box进行遍历
// 即,对i的interval的内的lo点进行遍历
for( RandomAccessIter1 p = p_begin;
p != p_end && Traits::is_lo_less_hi( *p, *i_begin, 0 );
++p )
{
if( Traits::id( *p ) == Traits::id( *i_begin ) )
continue;
// 判断在高维度上有没有不相交的可能
for( int dim = 1; dim <= last_dim; ++dim )
if( !Traits::does_intersect( *p, *i_begin, dim ) )
goto no_intersection1;
/// 判断p的最小坐标位于box i_begin内
if( Traits::contains_lo_point( *i_begin, *p, last_dim ) ) {
if( in_order )
callback( *p, *i_begin );
else
callback( *i_begin, *p );
}
no_intersection1:
;
}
++i_begin;
} else { // 如果第0个维度,i_begin的lo值不小于p_begin的lo值
for( RandomAccessIter2 i = i_begin;
i != i_end && Traits::is_lo_less_hi( *i, *p_begin, 0 );
++i )
{
if( Traits::id( *p_begin ) == Traits::id( *i ) )
continue;
for( int dim = 1; dim <= last_dim; ++dim )
if( !Traits::does_intersect( *p_begin, *i, dim ) )
goto no_intersection2;
if( Traits::contains_lo_point( *i, *p_begin, last_dim ) ) {
if( in_order )
callback( *p_begin, *i );
else
callback( *i, *p_begin );
}
no_intersection2:
;
}
++p_begin;
}
}
}
split_points
// returns iterator for first element in [begin,end) which does not satisfy
// the Split_Points_Predicate: [begin,mid) contains only points strictly less
// than mi. so, elements from [mid,end) are equal or higher than mi.
template< class RandomAccessIter, class Predicate_traits, class T >
RandomAccessIter
split_points( RandomAccessIter begin, RandomAccessIter end,
Predicate_traits traits, int dim, T& mi )
{
// magic formula
int levels = (int)(.91*std::log(((double)std::distance(begin,end))/137.0)+1);
levels = (levels <= 0) ? 1 : levels;
RandomAccessIter it = iterative_radon( begin, end, traits, dim, levels );
mi = Predicate_traits::min_coord( *it, dim );
return std::partition( begin, end,
typename Predicate_traits::Lo_less( mi, dim ) );
}
关于这部分内容,并没找到合适的解释。