zoukankan      html  css  js  c++  java
  • iOS音频格式PCM转G711u(或G711a-law)

      请尊重作者劳动成果,如需转载本博客文章请注明出处!谢谢合作!微笑

      inputData是PCM的实时数据,可以通过转码,获取到最后导出的G711u数据(sendData)

        NSUInteger datalength = [inputData length];

        

        Byte *byteData = (Byte *)[inputData bytes];

        

        short *pPcm = (short *)byteData;

        

        int outlen = 0;

        

        int len =(int)datalength / 2;

        

        Byte * G711Buff = (Byte *)malloc(len);

        

        memset(G711Buff,0,len);

        

        int i;

        

        for (i=0; i<len; i++) {

            //此处修改转换格式(a-law或u-law)

            G711Buff[i] = linear2alaw(pPcm[i]);        

        }

        

        outlen = i;

        

        Byte *sendbuff = (Byte *)G711Buff;

        

        NSData * sendData = [[NSData alloc]initWithBytes:sendbuff length:len];

        

        [self.delegate backVoiceDataWithG711u:sendData];

     

    ---------------------------------------------

    转码文件

    G711.h

     

     

    #ifndef __G_711_H_

    #define __G_711_H_

     

    #include <stdint.h>

     

    enum _e_g711_tp

    {

    TP_ALAW, //G711A

    TP_ULAW //G711U

    };

     

    unsigned char linear2alaw(int pcm_val); /* 2's complement (16-bit range) */

    int alaw2linear(unsigned char a_val);

     

    unsigned char linear2ulaw(int pcm_val); /* 2's complement (16-bit range) */

    int ulaw2linear(unsigned char u_val);

     

    unsigned char alaw2ulaw(unsigned char aval);

    unsigned char ulaw2alaw(unsigned char uval);

     

    int g711_decode(void *pout_buf, int *pout_len, const void *pin_buf, const int in_len , int type);

     

    #endif

     

    ------------------

    G711.cpp文件

     

     

    /*

     * g711.c

     *

     * u-law, A-law and linear PCM conversions.

     */

     

    //#include "stdafx.h"

    #include <stdint.h>

    #include <stdio.h>

    #include "g711.h"

     

    #define SIGN_BIT (0x80) /* Sign bit for a A-law byte. */

    #define QUANT_MASK (0xf) /* Quantization field mask. */

    #define NSEGS (8) /* Number of A-law segments. */

    #define SEG_SHIFT (4) /* Left shift for segment number. */

    #define SEG_MASK (0x70) /* Segment field mask. */

     

    static short seg_end[8] = {0xFF, 0x1FF, 0x3FF, 0x7FF,

        0xFFF, 0x1FFF, 0x3FFF, 0x7FFF};

     

    /* copy from CCITT G.711 specifications */

    unsigned char _u2a[128] = { /* u- to A-law conversions */

    1, 1, 2, 2, 3, 3, 4, 4,

    5, 5, 6, 6, 7, 7, 8, 8,

    9, 10, 11, 12, 13, 14, 15, 16,

    17, 18, 19, 20, 21, 22, 23, 24,

    25, 27, 29, 31, 33, 34, 35, 36,

    37, 38, 39, 40, 41, 42, 43, 44,

    46, 48, 49, 50, 51, 52, 53, 54,

    55, 56, 57, 58, 59, 60, 61, 62,

    64, 65, 66, 67, 68, 69, 70, 71,

    72, 73, 74, 75, 76, 77, 78, 79,

    81, 82, 83, 84, 85, 86, 87, 88,

    89, 90, 91, 92, 93, 94, 95, 96,

    97, 98, 99, 100, 101, 102, 103, 104,

    105, 106, 107, 108, 109, 110, 111, 112,

    113, 114, 115, 116, 117, 118, 119, 120,

    121, 122, 123, 124, 125, 126, 127, 128};

     

    unsigned char _a2u[128] = { /* A- to u-law conversions */

    1, 3, 5, 7, 9, 11, 13, 15,

    16, 17, 18, 19, 20, 21, 22, 23,

    24, 25, 26, 27, 28, 29, 30, 31,

    32, 32, 33, 33, 34, 34, 35, 35,

    36, 37, 38, 39, 40, 41, 42, 43,

    44, 45, 46, 47, 48, 48, 49, 49,

    50, 51, 52, 53, 54, 55, 56, 57,

    58, 59, 60, 61, 62, 63, 64, 64,

    65, 66, 67, 68, 69, 70, 71, 72,

    73, 74, 75, 76, 77, 78, 79, 79,

    80, 81, 82, 83, 84, 85, 86, 87,

    88, 89, 90, 91, 92, 93, 94, 95,

    96, 97, 98, 99, 100, 101, 102, 103,

    104, 105, 106, 107, 108, 109, 110, 111,

    112, 113, 114, 115, 116, 117, 118, 119,

    120, 121, 122, 123, 124, 125, 126, 127};

     

    static int

    search(

    int val,

    short *table,

    int size)

    {

    int i;

     

    for (i = 0; i < size; i++) {

    if (val <= *table++)

    return (i);

    }

    return (size);

    }

     

    /*

     * linear2alaw() - Convert a 16-bit linear PCM value to 8-bit A-law

     *

     * linear2alaw() accepts an 16-bit integer and encodes it as A-law data.

     *

     * Linear Input Code Compressed Code

     * ------------------------ ---------------

     * 0000000wxyza 000wxyz

     * 0000001wxyza 001wxyz

     * 000001wxyzab 010wxyz

     * 00001wxyzabc 011wxyz

     * 0001wxyzabcd 100wxyz

     * 001wxyzabcde 101wxyz

     * 01wxyzabcdef 110wxyz

     * 1wxyzabcdefg 111wxyz

     *

     * For further information see John C. Bellamy's Digital Telephony, 1982,

     * John Wiley & Sons, pps 98-111 and 472-476.

     */

    unsigned char

    linear2alaw(

    int pcm_val) /* 2's complement (16-bit range) */

    {

    int mask;

    int seg;

    unsigned char aval;

     

    if (pcm_val >= 0) {

    mask = 0xD5; /* sign (7th) bit = 1 */

    } else {

    mask = 0x55; /* sign bit = 0 */

    pcm_val = -pcm_val - 8;

    }

     

    /* Convert the scaled magnitude to segment number. */

    seg = search(pcm_val, seg_end, 8);

     

    /* Combine the sign, segment, and quantization bits. */

     

    if (seg >= 8) /* out of range, return maximum value. */

    return (0x7F ^ mask);

    else {

    aval = seg << SEG_SHIFT;

    if (seg < 2)

    aval |= (pcm_val >> 4) & QUANT_MASK;

    else

    aval |= (pcm_val >> (seg + 3)) & QUANT_MASK;

    return (aval ^ mask);

    }

    }

     

    /*

     * alaw2linear() - Convert an A-law value to 16-bit linear PCM

     *

     */

    int

    alaw2linear(

    unsigned char a_val)

    {

    int t;

    int seg;

     

    a_val ^= 0x55;

     

    t = (a_val & QUANT_MASK) << 4;

    seg = ((unsigned)a_val & SEG_MASK) >> SEG_SHIFT;

    switch (seg) {

    case 0:

    t += 8;

    break;

    case 1:

    t += 0x108;

    break;

    default:

    t += 0x108;

    t <<= seg - 1;

    }

    return ((a_val & SIGN_BIT) ? t : -t);

    }

     

    #define BIAS (0x84) /* Bias for linear code. */

     

    /*

     * linear2ulaw() - Convert a linear PCM value to u-law

     *

     * In order to simplify the encoding process, the original linear magnitude

     * is biased by adding 33 which shifts the encoding range from (0 - 8158) to

     * (33 - 8191). The result can be seen in the following encoding table:

     *

     * Biased Linear Input Code Compressed Code

     * ------------------------ ---------------

     * 00000001wxyza 000wxyz

     * 0000001wxyzab 001wxyz

     * 000001wxyzabc 010wxyz

     * 00001wxyzabcd 011wxyz

     * 0001wxyzabcde 100wxyz

     * 001wxyzabcdef 101wxyz

     * 01wxyzabcdefg 110wxyz

     * 1wxyzabcdefgh 111wxyz

     *

     * Each biased linear code has a leading 1 which identifies the segment

     * number. The value of the segment number is equal to 7 minus the number

     * of leading 0's. The quantization interval is directly available as the

     * four bits wxyz.  * The trailing bits (a - h) are ignored.

     *

     * Ordinarily the complement of the resulting code word is used for

     * transmission, and so the code word is complemented before it is returned.

     *

     * For further information see John C. Bellamy's Digital Telephony, 1982,

     * John Wiley & Sons, pps 98-111 and 472-476.

     */

    unsigned char

    linear2ulaw(

    int pcm_val) /* 2's complement (16-bit range) */

    {

    int mask;

    int seg;

    unsigned char uval;

     

    /* Get the sign and the magnitude of the value. */

    if (pcm_val < 0) {

    pcm_val = BIAS - pcm_val;

    mask = 0x7F;

    } else {

    pcm_val += BIAS;

    mask = 0xFF;

    }

     

    /* Convert the scaled magnitude to segment number. */

    seg = search(pcm_val, seg_end, 8);

     

    /*

    * Combine the sign, segment, quantization bits;

    * and complement the code word.

    */

    if (seg >= 8) /* out of range, return maximum value. */

    return (0x7F ^ mask);

    else {

    uval = (seg << 4) | ((pcm_val >> (seg + 3)) & 0xF);

    return (uval ^ mask);

    }

     

    }

     

    /*

     * ulaw2linear() - Convert a u-law value to 16-bit linear PCM

     *

     * First, a biased linear code is derived from the code word. An unbiased

     * output can then be obtained by subtracting 33 from the biased code.

     *

     * Note that this function expects to be passed the complement of the

     * original code word. This is in keeping with ISDN conventions.

     */

    int

    ulaw2linear(

    unsigned char u_val)

    {

    int t;

     

    /* Complement to obtain normal u-law value. */

    u_val = ~u_val;

     

    /*

    * Extract and bias the quantization bits. Then

    * shift up by the segment number and subtract out the bias.

    */

    t = ((u_val & QUANT_MASK) << 3) + BIAS;

    t <<= ((unsigned)u_val & SEG_MASK) >> SEG_SHIFT;

     

    return ((u_val & SIGN_BIT) ? (BIAS - t) : (t - BIAS));

    }

     

    /* A-law to u-law conversion */

    unsigned char

    alaw2ulaw(

    unsigned char aval)

    {

    aval &= 0xff;

    return ((aval & 0x80) ? (0xFF ^ _a2u[aval ^ 0xD5]) :

        (0x7F ^ _a2u[aval ^ 0x55]));

    }

     

    /* u-law to A-law conversion */

    unsigned char

    ulaw2alaw(

    unsigned char uval)

    {

    uval &= 0xff;

    return ((uval & 0x80) ? (0xD5 ^ (_u2a[0xFF ^ uval] - 1)) :

        (0x55 ^ (_u2a[0x7F ^ uval] - 1)));

    }

     

    int g711_decode(void *pout_buf, int *pout_len, const void *pin_buf, const int in_len , int type)

    {

    int16_t *dst = (int16_t *) pout_buf;

    uint8_t *src = (uint8_t *) pin_buf;

    uint32_t i = 0;

    int Ret = 0;

     

    if ((NULL == pout_buf) ||

    (NULL == pout_len) ||

    (NULL == pin_buf) ||

    (0 == in_len))

    {

    return -1;

    }

     

    if (*pout_len < 2 * in_len)

    {

    return -2;

    }

    //---{{{

    if (TP_ALAW == type)

    {

    for (i = 0; i < in_len; i++)

    {

    //*(dst++) = alawtos16[*(src++)];

    *(dst++) = (int16_t)alaw2linear(*(src++));

    }

    }else

    {

    for (i = 0; i < in_len; i++)

    {

    //*(dst++) = alawtos16[*(src++)];

    *(dst++) = (int16_t)ulaw2linear(*(src++));

    }

    }

     

    //---}}}

    *pout_len = 2 * in_len;

     

    Ret = 2 * in_len;

    return Ret;

    }

     

  • 相关阅读:
    【老孙随笔】项目经理要如何看待技术?
    从菜鸟到CTO——你的目标需要管理
    FormatX源代码格式化插件V2.0版
    JavaScript面向对象之静态与非静态类
    FormatX源代码格式化插件
    正确捕获 WCF服务调用中发生的异常及处理技巧
    2010,应该感谢的那些人以及那些未完成的事
    使用IErrorHandle对WCF服务器进行异常处理
    代码重构之路的艰辛
    从读取Excel文件引申出的问题(上)
  • 原文地址:https://www.cnblogs.com/graveliang/p/5688734.html
Copyright © 2011-2022 走看看